Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124385

RESUMO

CaWO4 nanoparticles were obtained by facile mechanochemical synthesis at room temperature, applying two different milling speeds. Additionally, a solid-state reaction was employed to assess the phase composition, structural, and optical characteristics of CaWO4. The samples were analyzed by X-ray diffraction (XRD), transition electron microscopy (TEM), and Raman, infrared (IR), ultraviolet-visible (UV-Vis) reflectance, and photoluminescence (PL) spectroscopies. The phase formation of CaWO4 was achieved after 1 and 5 h of applied milling speeds of 850 and 500 rpm, respectively. CaWO4 was also obtained after heat treatment at 900 °C for 12 h. TEM and X-ray analyses were used to calculate the average crystallite and grain size. The Raman and infrared spectroscopies revealed the main vibrations of the WO4 groups and indicated that more distorted structural units were formed when the compound was synthesized by the solid-state method. The calculated value of the optical band gap of CaWO4 significantly increased from 2.67 eV to 4.53 eV at lower and higher milling speeds, respectively. The determined optical band gap of CaWO4, prepared by a solid-state reaction, was 5.36 eV. Blue emission at 425 (422) nm was observed for all samples under an excitation wavelength of 230 nm. CaWO4 synthesized by the solid-state method had the highest emission intensity. It was established that the intensity of the PL peak depended on two factors: the morphology of the particles and the crystallite sizes. The calculated color coordinates of the CaWO4 samples were located in the blue region of the CIE diagram. This work demonstrates that materials with optical properties can be obtained simply and affordably using the mechanochemical method.

2.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124858

RESUMO

In this paper, the crystallization behavior of 50ZnO:47B2O3:3Nb2O3:0.5Eu2O3 (G-0 h) glass has been investigated in detail by DSC, XRD and TEM analysis. The luminescent properties of the resulting glass-ceramics were also investigated. By XRD and TEM analysis, crystallization of several crystalline phases has been proved (α-Zn3B2O6, ß-Zn3B2O6 and ZnNb2O6). By calculating crystal parameters, it was found that europium ions are successfully incorporated in the ß-Zn3B2O6. Photo-luminescent spectra showed increased emission in the resulting glass-ceramic samples compared to the parent glass sample due to higher asymmetry of Eu3+ ions in the obtained crystalline phases. It was established that the optimum emission intensity is registered for glass-ceramic samples obtained after 25 h heat treatment of the parent glass.

3.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893347

RESUMO

Glasses with the compositions in mol % of 50ZnO:(50 - x)B2O3:0.5Eu2O3:xWO3, x = 0, 1, 3, 5 and 10 were obtained by applying the melt-quenching method and investigated by Raman spectroscopy, DSC analysis and photoluminescence (PL) spectroscopy. Raman spectra revealed that tungstate ions incorporate into the base zinc borate glass as tetrahedral [WO4]2- groups, and octahedral [WØ4O2]2- species with four bridging and two non-bridging oxygen atoms. There are also metaborate, [BØ2O]- and pyroborate units, [B2O5]4-, in the glass networks. The glasses are characterized by good transmission in the visible region, at about 80%. Photoluminescence (PL) spectra evidenced that WO3 is an appropriate constituent for the modification of zinc borate glass structure and for enhancing the Eu3+ luminescent intensity. The most intense luminescence peak observed, at 612 nm, suggests that the glasses are potential materials for red emission.

4.
Materials (Basel) ; 17(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673148

RESUMO

In this study, pure TiO2 gels were synthesized by applying the sol-gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the gel prepared with the addition of EG was amorphous even at 400 °C, while the other gel was amorphous up to 300 °C. It was found that TiO2 (anatase) had a dominant crystalline phase during heating to 600 °C, while at 700 °C, TiO2 (rutile) appeared. The as-obtained powdered materials were annealed at 500 °C and subsequently underwent photocatalytic tests with paracetamol. Additionally, the TiO2 samples were modified with Ag+ co-catalysts (10-2 M), using photofixation by UV illumination. The photocatalytic activity of the Ag-modified powders was also tested in the photodegradation of a commonly used paracetamol in aqueous solution under UV light illumination. The obtained data exhibited that the annealed samples had better photocatalytic efficiency and decomposed paracetamol faster in comparison to the non-annealed sol-gel powders. The highest degradation efficiency was observed for the TBT/isop/Ag material, with degradation efficiencies average values of 65.59% and 75.61% paracetamol achieved after the third cycle of photocatalytic treatment. The co-catalytically modified powders had higher photocatalytic efficiency in comparison to the pure nanosized powders. Moreover, the sol-gel powders of TBT/EG, TBT/EG/Ag (10-2 M), TBT/isop, and TBT/isop/Ag (10-2 M) demonstrated the ability to retain their photocatalytic activity even after three cycles of use, suggesting that they could find practical use in the treatment of pharmaceutical wastewater. The observed photocatalytic efficiency and positive impact of silver make the prepared powders a desirable choice for pharmaceutical drug degradation, helping to promote environmentally friendly and effective wastewater treatment technology.

5.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541568

RESUMO

The effect of the addition of Nb2O5 (up to 5 mol%) on the structure and luminescent properties of ZnO-B2O3 glass doped with 0.5 mol% (1.32 × 1022) Eu2O3 was investigated by applying infrared (IR), Raman and photoluminescence (PL) spectroscopy. Through differential thermal analysis and density measurements, various physical properties such as molar volume, oxygen packing density and glass transition temperature were determined. IR and Raman spectra revealed that niobium ions enter into the base zinc borate glass structure as NbO4 tetrahedra and NbO6 octahedra. A strong red emission from the 5D0 level of Eu3+ ions was registered under near UV (392 nm) excitation using the 7F0 → 5L6 transition of Eu3+. The integrated fluorescence intensity ratio R (5D0 → 7F2/5D0 → 7F1) was calculated to estimate the degree of asymmetry around the active ion, suggesting a location of Eu3+ in non-centrosymmetric sites. The higher Eu3+ luminescence emission observed in zinc borate glasses containing 1-5 mol% Nb2O5 compared to the Nb2O5-free zinc borate glass evidences that Nb2O5 is an appropriate component for modifying the host glass structure and improving the emission intensity.

6.
Materials (Basel) ; 16(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959622

RESUMO

BaMoO4 was obtained via facile mechanochemical synthesis at room temperature and a solid-state reaction. An evaluation of the phase composition and structural and optical properties of BaMoO4 was conducted. The influence of different milling speeds on the preparation of BaMoO4 was explored. A shorter reaction time for the phase formation of BaMoO4 was achieved using a milling speed of 850 rpm. A milling speed of 500 rpm led to partial amorphization of the initial reagents and to prolongation of the synthesis time of up to 3 h of milling time. Solid-state synthesis was performed via heat treatment at 900 °C for 15 h. X-ray diffraction analysis (XRD), infrared (IR) and UV diffuse reflectance (UV-Vis) and photoluminescence (PL) spectroscopy were carried out to characterize the samples. Independently of the method of preparation, the obtained samples had tetragonal symmetry. The average crystallite sizes of all samples, calculated using Scherrer's formula, were in the range of 240 to 1540 Å. IR spectroscopy showed that more distorted structural MoO4 units were formed when the compound was synthesized via a solid-state reaction. The optical band gap energy of the obtained materials was found to decrease from 4.50 to 4.30 eV with increasing crystallite sizes. Green- and blue-light emissions were observed for BaMoO4 phases under excitation wavelengths of 330 and 488 nm. It was established that the intensity of the PL peaks depends on two factors: the symmetry of MoO4 units and the crystallite sizes.

7.
Materials (Basel) ; 16(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895760

RESUMO

In this study, we investigated the influence of Bi2O3 and WO3 on both structure and optical properties of 50ZnO:(49 - x)B2O3:1Bi2O3:xWO3; x = 1, 5, 10 glasses doped with 0.5 mol% Eu2O3. IR spectroscopy revealed the presence of trigonal BØ3 units connecting superstructural groups, [BØ2O]- metaborate groups, tetrahedral BØ4- units in superstructural groupings (Ø = bridging oxygen atom), borate triangles with nonbridging oxygen atoms, [WO4]2- tetrahedral, and octahedral WO6 species. Neutron diffraction experimental data were simulated by reverse Monte Carlo modeling. The atomic distances and coordination numbers were established, confirming the short-range order found by IR spectra. The synthesized glasses were characterized by red emission at 612 nm. All findings suggest that Eu3+ doped zinc borate glasses containing both WO3 and Bi2O3 have the potential to serve as a substitute for red phosphor with high color purity.

8.
Materials (Basel) ; 16(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37834537

RESUMO

This paper studies the influence of B2O3 on the structure, properties and antibacterial abilities of sol-gel-derived TiO2/TeO2/B2O3 powders. Titanium(IV) butoxide, telluric(VI) acid and boric acid were used as precursors. Differences were observed in the degree of decomposition of Ti butoxide in the presence of H3BO3 and H6TeO6 acids. The phase transformations of the obtained gels in the temperature range of 200-700 °C were investigated by XRD. Composite materials containing an amorphous phase and different crystalline phases (metallic Te, α-TeO2, anatase, rutile and TiTe3O8) were prepared. Heating at 400 °C indicated a crystalline-to-amorphous-phase ratio of approximately 3:1. The scanning electron microscopy (SEM) analysis showed the preparation of plate-like TiO2 nanoparticles. The IR results showed that the short-range order of the amorphous phases that are part of the composite materials consists of TiO6, BO3, BO4 and TeO4 structural units. Free B2O3 was not detected in the investigated compositions which could be related to the better connectivity between the building units as compared to binary TiO2/B2O3 compositions. The UV-Vis spectra of the investigated gels exhibited a red shift of the cut-off due to the presence of boron and tellurium units. The binary sample achieved the maximum photodegradation efficiency (94%) toward Malachite green dye under UV irradiation, whereas the ternary sample photoactivity was very low. The compositions exhibited promising antibacterial activity against E. coli NBIMCC K12 407.

9.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201778

RESUMO

TiO2 nanopowders modified by Nd and Sm were prepared using the sol-gel technique. It was found by XRD analysis that the samples containing Sm are amorphous up to 300 °C, while those with Nd preserve a mixed organic-inorganic amorphous structure at higher temperatures (400 °C). The TiO2 (rutile) was not detected up to 700 °C in the presence of both modified oxides. TiO2 (anatase) crystals found at about 400 °C in the Sm-modified sample exhibited an average crystallite size of about 25-30 nm, while doping with Nd resulted in particles of a lower size-5-10 nm. It was established by DTA that organic decomposition is accompanied by significant weight loss occurring in the temperature range 240-350 °C. Photocatalytic tests showed that the samples heated at 500 °C possess photocatalytic activity under UV irradiation toward Malachite green organic dye. Selected compositions exhibited good antimicrobial activity against E. coli K12 and B. subtilis.


Assuntos
Géis/química , Neodímio/química , Pós/química , Samário/química , Titânio/química , Bacillus subtilis/efeitos dos fármacos , Catálise , Escherichia coli/efeitos dos fármacos , Temperatura Alta , Transição de Fase , Corantes de Rosanilina/química , Análise Espectral , Titânio/efeitos da radiação , Raios Ultravioleta , Difração de Raios X
10.
Beilstein J Nanotechnol ; 8: 2454-2463, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29234580

RESUMO

We present results on laser-assisted formation of two- and three-dimensional structures comprised of gold nanoparticles in glass. The sample material was gold-ion-doped borosilicate glass prepared by conventional melt quenching. The nanoparticle growth technique consisted of two steps - laser-induced defect formation and annealing. The first step was realized by irradiating the glass by nanosecond and femtosecond laser pulses over a wide range of fluences and number of applied pulses. The irradiation by nanosecond laser pulses (emitted by a Nd:YAG laser system) induced defect formation, expressed by brown coloration of the glass sample, only at a wavelength of 266 nm. At 355, 532 and 1064 nm, no coloration of the sample was observed. The femtosecond laser irradiation at 800 nm also induced defects, again observed as brown coloration. The absorbance spectra indicated that this coloration was related to the formation of oxygen deficiency defects. After annealing, the color of the irradiated areas changed to pink, with a corresponding well-defined peak in the absorbance spectrum. We relate this effect to the formation of gold nanoparticles with optical properties defined by plasmon excitation. Their presence was confirmed by high-resolution TEM analysis. No nanoparticle formation was observed in the samples irradiated by nanosecond pulses at 355, 532 and 1064 nm. The optical properties of the irradiated areas were found to depend on the laser processing parameters; these properties were studied based on Mie theory, which was also used to correlate the experimental optical spectra and the characteristics of the nanoparticles formed. We also discuss the influence of the processing conditions on the characteristics of the particles formed and the mechanism of their formation and demonstrate the fabrication of structures composed of nanoparticles inside the glass sample. This technique can be used for the preparation of 3D nanoparticle systems embedded in transparent materials with potential applications in the design of new optical components, such as metamaterials and in plasmonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA