Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475322

RESUMO

Water pollution is becoming a great concern at the global level due to highly polluted effluents, which are charged year by year with increasing amounts of organic residues, dyes, pharmaceuticals and heavy metals. For some of these pollutants, the industrial treatment of wastewater is still relevant. Yet, in some cases, such as pharmaceuticals, specific treatment schemes are urgently required. Therefore, the present study describes the synthesis and evaluation of promising cryostructured composite adsorbents based on chitosan containing native minerals and two types of reinforcement materials (functionalized kaolin and synthetic silicate microparticles). The targeted pharmaceuticals refer to the ciprofloxacin (CIP) antibiotic and the carbamazepine (CBZ) drug, for which the current water treatment process seem to be less efficient, making them appear in exceedingly high concentrations, even in tap water. The study reveals first the progress made for improving the mechanical stability and resilience to water disintegration, as a function of pH, of chitosan-based cryostructures. Further on, a retention study shows that both pharmaceuticals are retained with high efficiency (up to 85.94% CIP and 86.38% CBZ) from diluted aqueous solutions.

2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397088

RESUMO

In recent years, there has been a challenging interest in developing low-cost biopolymeric materials for wastewater treatment. In the present work, new adsorbents, based on different types of chitosan (commercial, commercial chitin-derived chitosan and chitosan synthesized from shrimp shell waste) and inorganic-organic composites have been evaluated for copper ions removal. The efficacy of the synthesis of chitosan-based composite beads has been determined by studying various characteristics using several techniques, including FTIR spectroscopy, X-ray diffraction, porosimetry (N2 adsorption), and scanning electron microscopy (SEM). Adsorption kinetics was performed using different adsorption models to determine the adsorption behavior of the materials in the aqueous media. For all composite beads, regardless of the type of chitosan used, good capacity to remove copper ions from simulated waters was observed (up to 17 mg/g), which proves that the new materials hold potential for heavy metal retention. However, the adsorption efficiency was influenced by the type of chitosan used. Thus, for the series where commercial chitosan (CC) was used, the removal efficiency was approximately 29%; for the series with chitosan obtained from commercial chitin (SC), the removal efficiency was approximately 34%; for the series with chitosan enriched with CaCO3 (SH), the removal efficiency was approximately 52%.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Cobre , Concentração de Íons de Hidrogênio , Quitina/química , Adsorção , Água , Cinética , Íons , Poluentes Químicos da Água/análise
3.
Polymers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337194

RESUMO

This work reports the development of a marine-derived polysaccharide formulation based on k-Carrageenan and sodium alginate in order to produce a novel scaffold for engineering applications. The viscoelastic properties of the bicomponent inks were assessed via rheological tests prior to 3D printing. Compositions with different weight ratios between the two polymers, without any crosslinker, were subjected to 3D printing for the first time, to the best of our knowledge, and the fabrication parameters were optimized to ensure a controlled architecture. Crosslinking of the 3D-printed scaffolds was performed in the presence of a chloride mixture (CaCl2:KCl = 1:1; v/v) of different concentrations. The efficiency of the crosslinking protocol was evaluated in terms of swelling behavior and mechanical properties. The swelling behavior indicated a decrease in the swelling degree when the concentration of the crosslinking agent was increased. These results are consistent with the nanoindentation measurements and the results of the macro-scale tests. Moreover, morphology analysis was also used to determine the pore size of the samples upon freeze-drying and the uniformity and micro-architectural characteristics of the scaffolds. Overall, the registered results indicated that the bicomponent ink, Alg/kCG = 1:1 may exhibit potential for tissue-engineering applications.

4.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631504

RESUMO

Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H2SO4 and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H2O2. In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples' crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples.

5.
Membranes (Basel) ; 13(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37505009

RESUMO

The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.

6.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447499

RESUMO

This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin-polyethylene glycol-indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.

7.
Gels ; 9(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367113

RESUMO

This present study describes the investigation of new promising hybrid cryogels able to retain high amounts of antibiotics, specifically penicillin G, using chitosan or chitosan-biocellulose blends along with a naturally occurring clay, i.e., kaolin. In order to evaluate and optimize the stability of cryogels, three types of chitosan were used in this study, as follows: (i) commercial chitosan; (ii) chitosan prepared in the laboratory from commercial chitin; and (iii) chitosan prepared in the laboratory from shrimp shells. Biocellulose and kaolin, previously functionalized with an organosilane, were also investigated in terms of their potential to improve the stability of cryogels during prolonged submergence under water. The organophilization and incorporation of the clay into the polymer matrix were confirmed by different characterization techniques (such as FTIR, TGA, SEM), while their stability in time underwater was investigated by swelling measurements. As final proof of their superabsorbent behavior, the cryogels were tested for antibiotic adsorption in batch experiments, in which case cryogels based on chitosan extracted from shrimp shells seem to exhibit excellent adsorption properties for penicillin G.

8.
Biology (Basel) ; 12(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37372058

RESUMO

Heavy metal pollution of water from industrial discharge is a major problem worldwide. Thus, the quality of the environment and human health are severely affected. Various conventional technologies have been applied for water treatment, but these can be expensive, especially for industrial water treatment, and may have limited treatment efficiencies. Phytoremediation is a method that is successfully applied to remove metal ions from wastewater. In addition to the high efficiency of the depollution treatment, this method has the advantages of a low cost of the operation and the existence of many plants that can be used. This article presents the results of using algae (Sargassum fusiforme and Enteromorpha prolifera) to treat water containing manganese and lead ions. It was observed that maximum efficiencies for wastewater treatment were obtained when was used the algae Enteromorpha prolifera for a 600 min contact time period. The highest wastewater treatment efficiency obtained using Sargassum fusiforme was 99.46%.

9.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559715

RESUMO

This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer.

10.
Gels ; 8(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36547286

RESUMO

In tissue engineering, the potential of re-growing new tissue has been considered, however, developments towards such clinical and commercial outcomes have been modest. One of the most important elements here is the selection of a biomaterial that serves as a "scaffold" for the regeneration process. Herein, we designed hydrogels composed of two biocompatible natural polymers, namely gelatin with photopolymerizable functionalities and a pectin derivative amenable to direct protein conjugation. Aiming to design biomimetic hydrogels for bone regeneration, this study proposes double-reinforcement by way of inorganic/biopolymer hybrid filling composed of Si-based compounds and cellulose nanofibers. To attain networks with high flexibility and elastic modulus, a double-crosslinking strategy was envisioned-photochemical and enzyme-mediated conjugation reactions. The dual cross-linked procedure will generate intra- and intermolecular interactions between the protein and polysaccharide and might be a resourceful strategy to develop innovative scaffolding materials.

11.
Gels ; 8(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421564

RESUMO

Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.

12.
Mar Drugs ; 20(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354993

RESUMO

Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold's surface after cell cultures. All the results were correlated with the scaffolds' compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.


Assuntos
Alginatos , Gelatina , Animais , Gelatina/farmacologia , Alginatos/farmacologia , Tinta , Alicerces Teciduais , Engenharia Tecidual/métodos , Impressão Tridimensional , Regeneração Óssea
13.
Polymers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36236160

RESUMO

Considering its great industrial potential, epoxidized linseed oil (ELO) was crosslinked with different agents, both natural and synthetic: citric acid (CA, in the presence of water-W, or tetrahydrofuran-THF, as activator molecules) and Jeffamine D230, respectively, resulting bio-based polymeric matrices, studied further, comparatively, in terms of their properties, through different methods. Thermal curing parameters were established by means of Differential Scanning Calorimetry (DSC). Fourier transform Infrared Spectroscopy (FTIR) and DSC were used to identify the reactivity of each ELO-based formulation, discussing the influence of the employed curing systems under the conversion of the epoxy rings. Then, the obtained bio-based materials were characterized by different methods, establishing the structure-properties relation. Thermogravimetric analysis revealed higher thermal stability for the ELO_CA material when THF was used as an activator. Moreover, a higher glass transition temperature (Tg) with ~12 °C was registered for this material when compared with the one that resulted through the crosslinking of ELO with D230 conventional amine. Other important features, such as crosslink density, storage modulus, mechanical features, and water affinity, were discussed. Under the loop of a comprehensive approach, a set of remarkable properties were obtained for ELO_CA_THF material when compared with the one resulting from the crosslinking of ELO with the synthetic Jeffamine.

14.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234548

RESUMO

As bone diseases and defects are constantly increasing, the improvement of bone regeneration techniques is constantly evolving. The main purpose of this scientific study was to obtain and investigate biomaterials that can be used in tissue engineering. In this respect, nanocomposite inks of GelMA modified with hydroxyapatite (HA) substituted with Mg and Zn were developed. Using a 3D bioprinting technique, scaffolds with varying shapes and dimensions were obtained. The following analyses were used in order to study the nanocomposite materials and scaffolds obtained by the 3D printing technique: Fourier transform infrared spectrometry and X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-computed tomography (Micro-CT). The swelling and dissolvability of each scaffold were also studied. Biological studies, osteopontin (OPN), and osterix (OSX) gene expression evaluations were confirmed at the protein levels, using immunofluorescence coupled with confocal microscopy. These findings suggest the positive effect of magnesium and zinc on the osteogenic differentiation process. OSX fluorescent staining also confirmed the capacity of GelMA-HM5 and GelMA-HZ5 to support osteogenesis, especially of the magnesium enriched scaffold.

15.
Materials (Basel) ; 15(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888545

RESUMO

In this paper, the stability improvement of poly(lactic acid) (PLA)/styrene-isoprene block copolymer (SIS) loaded with silica nanoparticles is characterized. The protection efficiency in the material of thermal stability is mainly studied by means of high accurate isothermal and nonisothermal chemiluminescence procedures. The oxidation induction times obtained in the isothermal CL determinations increase from 45 min to 312 min as the polymer is free of silica or the filler loading is about 10%, respectively. The nonisothermal measurements reveal the values of onset oxidation temperatures with about 15% when the concentration of SiO2 particles is enhanced from none to 10%. The curing assay and Charlesby-Pinner representation as well as the modifications that occurred in the FTIR carbonyl band at 1745 cm-1 are appropriate proofs for the delay of oxidation in hybrid samples. The improved efficiency of silica during the accelerated degradation of PLA/SIS 30/n-SiO2 composites is demonstrated by means of the increased values of activation energy in correlation with the augmentation of silica loading. While the pristine material is modified by the addition of 10% silica nanoparticles, the activation energy grows from 55 kJ mol-1 to 74 kJ mol-1 for nonirradiated samples and from 47 kJ mol-1 to 76 kJ mol-1 for γ-processed material at 25 kGy. The stabilizer features are associated with silica nanoparticles due to the protection of fragments generated by the scission of hydrocarbon structure of SIS, the minor component, whose degradation fragments are early converted into hydroperoxides rather than influencing depolymerization in the PLA phase. The reduction of the transmission values concerning the growing reinforcement is evidence of the capacity of SiO2 to minimize the changes in polymers subjected to high energy sterilization. The silica loading of 10 wt% may be considered a proper solution for attaining an extended lifespan under the accelerated degradation caused by the intense transfer of energy, such as radiation processing on the polymer hybrid.

16.
Polymers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890572

RESUMO

The paper addresses the synthesis of a nano-fibre network by coaxial electrospinning, embedding the healing agent dicyclopentadiene (DCPD) in polyacrylonitrile (PAN) fibres. Compared to other encapsulation methods, the use of nano-fibres filled with healing agent have no effect on the mechanical properties of the matrix and can address a larger healing area. Additionally, carbon nanotubes were added as nanofillers to enhance the reactivity between DCPD and the epoxydic matrix. The self-healing capability of the nano-fibre network was carried out by flexural tests, at epoxy resin level and composite level. Results obtained from Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) confirmed the successful encapsulation of DCPD healing agent in PAN fibres. Flexural tests indicate that after 48 h, the epoxy resin has recovered 84% of its flexural strength while the composite material recovered 93%.

17.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566836

RESUMO

Organ-on-chips (OOCs) are microfluidic devices used for creating physiological organ biomimetic systems. OOC technology brings numerous advantages in the current landscape of preclinical models, capable of recapitulating the multicellular assemblage, tissue-tissue interaction, and replicating numerous human pathologies. Moreover, in cancer research, OOCs emulate the 3D hierarchical complexity of in vivo tumors and mimic the tumor microenvironment, being a practical cost-efficient solution for tumor-growth investigation and anticancer drug screening. OOCs are compact and easy-to-use microphysiological functional units that recapitulate the native function and the mechanical strain that the cells experience in the human bodies, allowing the development of a wide range of applications such as disease modeling or even the development of diagnostic devices. In this context, the current work aims to review the scientific literature in the field of microfluidic devices designed for urology applications in terms of OOC fabrication (principles of manufacture and materials used), development of kidney-on-chip models for drug-toxicity screening and kidney tumors modeling, bladder-on-chip models for urinary tract infections and bladder cancer modeling and prostate-on-chip models for prostate cancer modeling.

18.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628150

RESUMO

We designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide. FTIR spectra highlighted the modification and multi-components interaction. DLS, SEM, and contact angle tests demonstrated that the conjugation of hydrophobic molecules to chitosan increased surface roughness and hydrophilicity, since it triggered a core-shell macromolecular structuration. Nanoindentation revealed a notable durotaxis gradient due to chitosan/fatty acid self-organization and graphene sheet embedment. The composited building blocks with graphene oxide were more stable during in vitro enzymatic degradation tests and swelled less. In vitro viability, cytotoxicity, and inflammatory response tests yielded promising results, and the protein adsorption test demonstrated potential antifouling efficacy. The robust and stable substrates with heterogeneous architecture we developed show promise in biomedical applications.


Assuntos
Quitosana , Anisotropia , Quitosana/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Engenharia Tecidual
19.
Diagnostics (Basel) ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35328113

RESUMO

Nuclear magnetic resonance (NMR) metabolomics is currently popular enough to attract both specialized and non-specialized NMR groups involving both analytical trained personnel and newcomers, including undergraduate students. Recent interlaboratory studies performed by established NMR metabolomics groups demonstrated high reproducibility of the state-of-the-art NMR equipment and SOPs. There is, however, no assessment of NMR reproducibility when mixing both analytical experts and newcomers. An interlaboratory assessment of NMR quantitation reproducibility was performed using two NMR instruments belonging to different laboratories and involving several operators with different backgrounds and metabolomics expertise for the purpose of assessing the limiting factors for data reproducibility in a multipurpose NMR environment. The variability induced by the operator, automatic pipettes, NMR tubes and NMR instruments was evaluated in order to assess the limiting factors for quantitation reproducibility. The results estimated the expected reproducibility data in a real-life multipurpose NMR laboratory to a maximum 4% variability, demonstrating that the current NMR equipment and SOPs may compensate some of the operator-induced variability.

20.
Polymers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267854

RESUMO

The field of tissue engineering is constantly evolving as it aims to develop bioengineered and functional tissues and organs for repair or replacement. Due to their large surface area and ability to interact with proteins and peptides, graphene oxides offer valuable physiochemical and biological features for biomedical applications and have been successfully employed for optimizing scaffold architectures for a wide range of organs, from the skin to cardiac tissue. This review critically focuses on opportunities to employ protein-graphene oxide structures either as nanocomposites or as biocomplexes and highlights the effects of carbonaceous nanostructures on protein conformation and structural stability for applications in tissue engineering and regenerative medicine. Herein, recent applications and the biological activity of nanocomposite bioconjugates are analyzed with respect to cell viability and proliferation, along with the ability of these constructs to sustain the formation of new and functional tissue. Novel strategies and approaches based on stem cell therapy, as well as the involvement of the extracellular matrix in the design of smart nanoplatforms, are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...