Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 425(18): 3446-60, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23845423

RESUMO

Over the last decades, malaria parasites have been rapidly developing resistance against antimalarial drugs, which underlines the need for novel drug targets. Thioredoxin reductase (TrxR) is crucially involved in redox homeostasis and essential for Plasmodium falciparum. Here, we report the first crystal structure of P. falciparum TrxR bound to its substrate thioredoxin 1. Upon complex formation, the flexible C-terminal arm and an insertion loop of PfTrxR are rearranged, suggesting that the C-terminal arm changes its conformation during catalysis similar to human TrxR. Striking differences between P. falciparum and human TrxR are a Plasmodium-specific insertion and the conformation of the C-terminal arm, which lead to considerable differences in thioredoxin binding and disulfide reduction. Moreover, we functionally analyzed amino acid residues involved in substrate binding and in the architecture of the intersubunit cavity, which is a known binding site for disulfide reductase inhibitors. Cell biological experiments indicate that P. falciparum TrxR is indeed targeted in the parasite by specific inhibitors with antimalarial activity. Differences between P. falciparum and human TrxR and details on substrate reduction and inhibitor binding provide the first solid basis for structure-based drug development and lead optimization.


Assuntos
Plasmodium falciparum , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Substituição de Aminoácidos/fisiologia , Antimaláricos/química , Antimaláricos/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/genética , Serina/química , Serina/genética , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/genética
2.
Antioxid Redox Signal ; 17(4): 534-43, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22229886

RESUMO

AIMS: The malaria parasite Plasmodium falciparum possesses four unique selenoproteins (PfSel1-PfSel4) which are likely to represent important components of the redox-regulatory network of this infectious agent. So far these proteins have only been characterized in silico. The aim of the present study was to gain further insight into the structural, biochemical, and functional properties of P. falciparum selenoproteins. RESULTS: Using (75)Se labeling in P. falciparum cell culture, the presence of selenoproteins in the parasite could be verified for the first time. Bioinformatic analyses indicated distant relatedness between the Plasmodium proteins and selenoproteins described in other organisms, namely between PfSel1 and SelK, PfSel2 and SelT, and between PfSel4 and SelS. For PfSel3 no remarkable similarities with proteins from other organisms were identified. All four proteins were recombinantly produced in Escherichia coli as UGA→UGU (selenocysteine→cysteine) mutants. Using green fluorescent protein (GFP)-fusion proteins and immunofluorescence, the subcellular localization of the four selenoprotein mutants was studied. PfSel1, PfSel2, and PfSel4 localized to the endoplasmic reticulum whereas PfSel3 was visualized in the nucleus and/or the apicoplast. Functional assays support the roles of PfSel1 and PfSel4 in cellular redox reactions. Transcriptional profiles of the four selenoproteins, and proteins involved in selenoprotein biosynthesis, indicate that their expression is regulated via the availability of selenium and via oxidative and nitrosative stress. INNOVATION: In this study the presence of selenoproteins in Plasmodium has been proven for the first time; the subcellular localization of the proteins and their relatedness to known selenoproteins have been systematically studied, and recombinant proteins as well as information on regulation of transcript levels have been obtained. CONCLUSION: Taken together, our data enhance our understanding of the functional role of selenoproteins in Plasmodium.


Assuntos
Plasmodium falciparum/metabolismo , Proteoma , Proteínas de Protozoários/metabolismo , Selenoproteínas/metabolismo , Animais , Autorradiografia , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Nitrosação , Estresse Oxidativo , Plasmodium falciparum/crescimento & desenvolvimento , Frações Subcelulares/metabolismo
3.
Mol Biochem Parasitol ; 163(2): 77-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18973776

RESUMO

Adenylate kinases (AK; ATP+AMP<-->2 ADP; E.C. 2.7.4.3.) are enzymes essentially involved in energy metabolism and macromolecular biosynthesis. As we reported previously, the malarial parasite Plasmodium falciparum possesses one genuine AK and one GTP-AMP phosphotransferase. Analysis of the P. falciparum genome suggested the presence of one additional adenylate kinase, which we designated AK2. Recombinantly produced AK2 was found to be a monomeric protein of 33 kDa showing a specific activity of 10 U/mg with ATP and AMP as a substrate pair and to interact with the AK-specific inhibitor P(1),P(5)-(diadenosine-5')-pentaphosphate (IC(50)=200 nM). At its N-terminus AK2 carries a predicted myristoylation sequence. This sequence is only present in AK2 of P. falciparum causing the severe tropical malaria and not in other malarial parasites. We heterologously coexpressed AK2 and P. falciparum N-myristoyltransferase (NMT) in the presence of myristate in Escherichia coli. As demonstrated by protein purification and mass spectrometry, AK2 is indeed myristoylated under catalysis of the parasites' transferase. The modification significantly enhances the stability of the kinase. Furthermore, AK2 and NMT were shown to interact strongly with each other forming a heterodimeric protein in vitro. To our knowledge this is the first direct evidence that P. falciparum NMT myristoylates an intact malarial protein.


Assuntos
Aciltransferases/química , Adenilato Quinase/química , Isoenzimas/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Aciltransferases/genética , Aciltransferases/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Clonagem Molecular , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
4.
Biol Chem ; 386(1): 41-52, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15843146

RESUMO

The glyoxalase system consisting of glyoxalase I (GloI) and glyoxalase II (GloII) constitutes a glutathione-dependent intracellular pathway converting toxic 2-oxoaldehydes, such as methylglyoxal, to the corresponding 2-hydroxyacids. Here we describe a complete glyoxalase system in the malarial parasite Plasmodium falciparum. The biochemical, kinetic and structural properties of cytosolic GloI (cGloI) and two GloIIs (cytosolic GloII named cGloII, and tGloII preceded by a targeting sequence) were directly compared with the respective isofunctional host enzymes. cGloI and cGloII exhibit lower K(m) values and higher catalytic efficiencies (k(cat)/K(m) ) than the human counterparts, pointing to the importance of the system in malarial parasites. A Tyr185Phe mutant of cGloII shows a 2.5-fold increase in K(m) , proving the contribution of Tyr185 to substrate binding. Molecular models suggest very similar active sites/metal binding sites of parasite and host cell enzymes. However, a fourth protein, which has highest similarities to GloI, was found to be unique for malarial parasites; it is likely to act in the apicoplast, and has as yet undefined substrate specificity. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested as P. falciparum Glo inhibitors were active in the lower nanomolar range. The Glo system of Plasmodium will be further evaluated as a target for the development of antimalarial drugs.


Assuntos
Glutationa/farmacologia , Lactoilglutationa Liase , Plasmodium falciparum/enzimologia , Tioléster Hidrolases , Sequência de Aminoácidos , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Cinética , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/química , Lactoilglutationa Liase/genética , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
5.
FEBS Lett ; 554(3): 284-8, 2003 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-14623080

RESUMO

Recombinant Plasmodium falciparum glyoxalase I (PfGlx I) was characterized as monomeric Zn(2+)-containing enzyme of 44 kDa. The K(M) value of the methylglyoxal-glutathione adduct is 77+/-15 microM, the k(cat) value being 4000 min(-1) at 25 degrees C and pH 7.0. PfGlx I consists of two halves, each of which is homologous to the small 2-domain glyoxalase I of man. Both parts of the pfglx I gene were overexpressed; the C-terminal half of PfGlx I was found to be a stable protein and formed an enzymatically active dimer. These results support the hypothesis of domain-swapping and subunit fusion as mechanisms in glyoxalase I evolution.


Assuntos
Lactoilglutationa Liase/química , Lactoilglutationa Liase/genética , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Animais , Dimerização , Evolução Molecular , Glutationa/química , Glutationa/metabolismo , Glioxal/química , Glioxal/metabolismo , Humanos , Cinética , Lactoilglutationa Liase/metabolismo , Dados de Sequência Molecular , Peso Molecular , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Zinco/química , Zinco/metabolismo
6.
Eur J Biochem ; 270(6): 1057-64, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631266

RESUMO

Thioredoxins are a group of small redox-active proteins involved in cellular redox regulatory processes as well as antioxidant defense. Thioredoxin, glutaredoxin, and tryparedoxin are members of the thioredoxin superfamily and share structural and functional characteristics. In the malarial parasite, Plasmodium falciparum, a functional thioredoxin and glutathione system have been demonstrated and are considered to be attractive targets for antimalarial drug development. Here we describe the identification and characterization of a novel 22 kDa redox-active protein in P. falciparum. As demonstrated by in silico sequence analyses, the protein, named plasmoredoxin (Plrx), is highly conserved but found exclusively in malarial parasites. It is a member of the thioredoxin superfamily but clusters separately from other members in a phylogenetic tree. We amplified the gene from a gametocyte cDNA library and overexpressed it in E. coli. The purified gene product can be reduced by glutathione but much faster by dithiols like thioredoxin, glutaredoxin, trypanothione and tryparedoxin. Reduced Plrx is active in an insulin-reduction assay and reduces glutathione disulfide with a rate constant of 640 m-1.s-1 at pH 6.9 and 25 degrees C; glutathione-dependent reduction of H2O2 and hydroxyethyl disulfide by Plrx is negligible. Furthermore, plasmoredoxin provides electrons for ribonucleotide reductase, the enzyme catalyzing the first step of DNA synthesis. As demonstrated by Western blotting, the protein is present in blood-stage forms of malarial parasites. Based on these results, plasmoredoxin offers the opportunity to improve diagnostic tools based on PCR or immunological reactions. It may also represent a specific target for antimalarial drug development and is of phylogenetic interest.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Dissulfetos/metabolismo , Dissulfeto de Glutationa/metabolismo , Insulina/metabolismo , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Filogenia , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Alinhamento de Sequência , Tiorredoxinas/química , Tiorredoxinas/classificação , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA