Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840901

RESUMO

Platelet activation contributes to sepsis development, leading to microthrombosis and increased inflammation, which results in disseminated intravascular coagulation and multiple organ dysfunction. Although Cathelicidin can alleviate sepsis, its role in sepsis regulation remains largely unexplored. In this study, we identified Cath-HG, a novel Cathelicidin from Hylarana guentheri skin, and analyzed its structure using nuclear magnetic resonance spectroscopy. The modulatory effect of Cath-HG on the symptoms of mice with sepsis induced by cecal ligation and puncture was evaluated in vivo, and the platelet count, degree of organ damage, and microthrombosis were measured. The antiplatelet aggregation activity of Cath-HG was studied in vitro, and its target was verified. Finally, we further investigated whether Cath-HG could regulate thrombosis in vivo in a FeCl3 injury-induced carotid artery model. The results showed that Cath-HG exhibited an α-helical structure in sodium dodecyl sulfate solution and effectively reduced organ inflammation and damage, improving survival in septic mice. It alleviated sepsis-induced thrombocytopenia and microthrombosis. In vitro, Cath-HG specifically inhibited collagen-induced platelet aggregation and modulated glycoprotein VI (GPVI) signaling pathways. Dot blotting, enzyme-linked immunosorbent assay, and pull-down experiments confirmed GPVI as the target of Cath-HG. Molecular docking and amino acid residue truncations/mutations identified crucial sites of Cath-HG. These findings suggest that GPVI represents a promising therapeutic target for sepsis, and Cath-HG may serve as a potential treatment for sepsis-related thrombocytopenia and thrombotic events. Additionally, identifying Cath-HG as a GPVI inhibitor provides insights for developing novel antithrombotic therapies targeting platelet activation mediated by GPVI.

2.
J Proteome Res ; 20(11): 5079-5087, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587745

RESUMO

While substantial efforts have been made to optimize and standardize fecal metabolomics for studies in adults, the development of a standard protocol to analyze infant feces is, however, still lagging behind. Here, we present the development of a hands-on and robust protocol for proton 1H NMR spectroscopy of infant feces. The influence of extraction solvent, dilution ratio, homogenization method, filtration, and duration of centrifugation on the biochemical composition of infant feces was carefully evaluated using visual inspection of 1H NMR spectra in combination with multivariate statistical modeling. The optimal metabolomics protocol was subsequently applied on feces from seven infants collected at 8 weeks, 4, and 9 months of age. Interindividual variation was exceeding the variation induced by different fecal sample preparation methods, except for filtration. We recommend extracting fecal samples using water with a dilution ratio of 1:5 feces-to-water to homogenize using bead beating and to remove particulates using centrifugation. Samples collected from infants aged 8 weeks and 4 months showed elevated concentrations of milk oligosaccharide derivatives and lactic acid, whereas short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) were higher in the 9 month samples. The established protocol enables hands-on and robust analyses of the infant gut metabolome. The wide-ranging application of this protocol will facilitate interlaboratory comparison of infants' metabolic profiles and finally aid in a better understanding of infant gut health.


Assuntos
Metaboloma , Metabolômica , Adulto , Ácidos Graxos Voláteis/análise , Fezes/química , Humanos , Lactente , Recém-Nascido , Espectroscopia de Ressonância Magnética , Metabolômica/métodos
3.
J Biol Chem ; 297(1): 100865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118237

RESUMO

During feeding, a tick's mouthpart penetrates the host's skin and damages tissues and small blood vessels, triggering the extrinsic coagulation and lectin complement pathways. To elude these defense mechanisms, ticks secrete multiple anticoagulant proteins and complement system inhibitors in their saliva. Here, we characterized the inhibitory activities of the homologous tick salivary proteins tick salivary lectin pathway inhibitor, Salp14, and Salp9Pac from Ixodesscapularis in the coagulation cascade and the lectin complement pathway. All three proteins inhibited binding of mannan-binding lectin to the polysaccharide mannan, preventing the activation of the lectin complement pathway. In contrast, only Salp14 showed an appreciable effect on coagulation by prolonging the lag time of thrombin generation. We found that the anticoagulant properties of Salp14 are governed by its basic tail region, which resembles the C terminus of tissue factor pathway inhibitor alpha and blocks the assembly and/or activity of the prothrombinase complex in the same way. Moreover, the Salp14 protein tail contributes to the inhibition of the lectin complement pathway via interaction with mannan binding lectin-associated serine proteases. Furthermore, we identified BaSO4-adsorbing protein 1 isolated from the tick Ornithodoros savignyi as a distant homolog of tick salivary lectin pathway inhibitor/Salp14 proteins and showed that it inhibits the lectin complement pathway but not coagulation. The structure of BaSO4-adsorbing protein 1, solved here using NMR spectroscopy, indicated that this protein adopts a noncanonical epidermal growth factor domain-like structural fold, the first such report for tick salivary proteins. These data support a mechanism by which tick saliva proteins simultaneously inhibit both the host coagulation cascade and the lectin complement pathway.


Assuntos
Proteínas de Artrópodes/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Lectinas/genética , Proteínas e Peptídeos Salivares/ultraestrutura , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Coagulação Sanguínea/genética , Vasos Sanguíneos/parasitologia , Vasos Sanguíneos/patologia , Lectina de Ligação a Manose da Via do Complemento/genética , Ixodes/patogenicidade , Ixodes/ultraestrutura , Lectinas/ultraestrutura , Espectroscopia de Ressonância Magnética , Conformação Proteica , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Trombina/genética , Carrapatos/genética , Carrapatos/patogenicidade
4.
J Biol Chem ; 295(42): 14367-14378, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817341

RESUMO

Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight ß-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.


Assuntos
Quimiocina CCL5/antagonistas & inibidores , Proteínas e Peptídeos Salivares/química , Carrapatos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Cristalografia por Raios X , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
5.
Bioconjug Chem ; 31(3): 948-955, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32077689

RESUMO

Atherosclerosis is one of the leading causes of mortality in developed and developing countries. The onset of atherosclerosis development is accompanied by overexpression of several inflammatory chemokines. Neutralization of these chemokines by chemokine-binding agents attenuates atherosclerosis progression. Here, we studied structural binding features of the tick protein Evasin-3 to chemokine (C-X-C motif) ligand 1 (CXCL1). We showed that Evasin-3-bound CXCL1 is unable to activate the CXCR2 receptor, but retains affinity to glycosaminoglycans. This observation was exploited to detect inflammation by visualizing a group of closely related CXC-type chemokines deposited on cell walls in human endothelial cells and murine carotid arteries by a fluorescent Evasin-3 conjugate. This work highlights the applicability of tick-derived chemokine-binding conjugates as a platform for the development of new agents for inflammation imaging.


Assuntos
Proteínas de Artrópodes/metabolismo , Doenças das Artérias Carótidas/diagnóstico por imagem , Quimiocinas CXC/metabolismo , Endotélio Vascular/metabolismo , Carrapatos , Animais , Doenças das Artérias Carótidas/metabolismo , Glicosaminoglicanos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Camundongos
6.
J Biol Chem ; 294(33): 12370-12379, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31235521

RESUMO

Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8-Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17-56 and cyclic tcEv3 16-56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17-56 and tcEv3 16-56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.


Assuntos
Proteínas de Artrópodes , Glicosaminoglicanos , Neutrófilos/metabolismo , Receptores de Interleucina-8B , Rhipicephalus sanguineus/química , Proteínas e Peptídeos Salivares , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Movimento Celular , Cães , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Estrutura Quaternária de Proteína , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo
7.
Org Lett ; 21(7): 2095-2100, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912446

RESUMO

In Nature, multicyclic peptides constitute a versatile molecule class with various biological functions. For their pharmaceutical exploitation, chemical methodologies that enable selective consecutive macrocyclizations are required. We disclose a combination of enzymatic macrocyclization, CLIPS alkylation, and oxime ligation to prepare tetracyclic peptides. Five new small molecular scaffolds and differently sized model peptides featuring noncanonical amino acids were synthesized. Enzymatic macrocyclization, followed by one-pot scaffold-assisted cyclizations, yielded 21 tetracyclic peptides in a facile and robust manner.

8.
Chem Commun (Camb) ; 55(10): 1374-1377, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30520894

RESUMO

Selenocysteine scanning (SecScan) is a novel technique to map disulfide networks in proteins independent of structure-based distance information and mass spectrometry. SecScan applies systematic substitution of single Cys by Sec in combination with NMR spectroscopy for reliable and unambiguous determination of disulfide bond networks.


Assuntos
Dissulfetos/química , Peptídeos/química , Proteínas/química , Selenocisteína/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Peptídeos/genética , Peptídeos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
9.
Contrast Media Mol Imaging ; 9(4): 283-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24706612

RESUMO

Accurate time-resolved temperature mapping is crucial for the safe use of hyperthermia-mediated drug delivery. We here propose a magnetic resonance imaging temperature mapping method in which drug delivery systems serve not only to improve tumor targeting, but also as an accurate and absolute nano-thermometer. This method is based on the temperature-dependent chemical shift difference between water protons and the protons in different groups of drug delivery systems. We show that the chemical shift of the protons in the ethylene oxide group in polyethylene glycol (PEG) is temperature-independent, whereas the proton resonance of water decreases with increasing temperature. The frequency difference between both resonances is linear and does not depend on pH and physiological salt conditions. In addition, we show that the proton resonance of the methyl group in N-(2-hydroxypropyl)-methacrylamide (HPMA) is temperature-independent. Therefore, PEGylated liposomes, polymeric mPEG-b-pHPMAm-Lac2 micelles and HPMA copolymers can provide a temperature-independent reference frequency for absolute magnetic resonance (MR) thermometry. Subsequently, we show that multigradient echo MR imaging with PEGylated liposomes in situ allows accurate, time-resolved temperature mapping. In conclusion, nanocarrier materials may serve as highly versatile tools for tumor-targeted drug delivery, acting not only as hyperthermia-responsive drug delivery systems, but also as accurate and precise nano-thermometers.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanotecnologia , Termografia , Termometria/métodos , Sistemas de Liberação de Medicamentos , Humanos , Hipertermia Induzida , Imagens de Fantasmas , Polietilenoglicóis/química
10.
J Phys Chem B ; 116(44): 13172-82, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23078029

RESUMO

The tricarboxylic acid citric acid is a key intermediary metabolite in organisms from all domains of the tree of life. Surprisingly, this metabolite specifically interacts with the light-induced signaling state of the photoactive yellow protein (PYP), such that, at 30 mM, it retards recovery of this state to the stable ground state of the protein with up to 30%, in the range from pH 4.5 to pH 7. We have performed a detailed UV/vis spectroscopic study of the recovery of the signaling state of wild type (WT) PYP and two mutants, H108F and Δ25-PYP, derived from this protein, as a function of pH and the concentration of citric acid. This revealed that it is the dianionic form of citric acid that binds to the pB state of PYP. Its binding site is located in between the N-terminal cap and central ß-sheet of PYP, which is accessible only in the signaling state of the protein. The obtained results show how changes in the distribution of subspecies of the signaling state of PYP influence the rate of ground state recovery.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Cítrico/metabolismo , Hidrogênio/metabolismo , Fotorreceptores Microbianos/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ácido Cítrico/química , Halorhodospira halophila/metabolismo , Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta
11.
MAGMA ; 25(1): 33-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21484477

RESUMO

OBJECT: Proton resonance frequency shift (PRFS)-based MR thermometry (MRT) is hampered by heat-induced susceptibility changes when applied in tissues containing fat, e.g., the human breast. In order to assess the impact of fat susceptibility changes on PRFS-based MRT during thermal therapy in the human breast, reliable knowledge of the temperature dependence of the magnetic volume susceptibility of fat, dχ(fat)/dT, is a prerequisite. In this work we have measured dχ(fat)/dT of human breast fat tissue, using a double-reference method to ensure invariance to temperature-induced changes in the proton electron screening constant. MATERIALS AND METHODS: Ex vivo measurements were taken on a 14.1 T five mm narrow bore NMR spectrometer. Breast fat tissue samples were collected from six subjects, directly postmortem. The susceptibility was measured over a temperature range from 24°C to 65°C. RESULTS: A linear behavior of the susceptibility over temperature was observed for all samples. The resulting dχ(fat)/dT of human breast fat ranged between 0.0039 and 0.0076 ppm/°C. CONCLUSION: It is concluded that the impact of heat-induced susceptibility changes of fat during thermal therapy in the breast may not be neglected.


Assuntos
Mama/patologia , Espectroscopia de Ressonância Magnética/métodos , Tecido Adiposo/patologia , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Elétrons , Desenho de Equipamento , Temperatura Alta , Humanos , Magnetismo , Pessoa de Meia-Idade , Prótons , Reprodutibilidade dos Testes , Espectrofotometria/métodos , Temperatura
12.
Amino Acids ; 40(2): 731-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20683629

RESUMO

Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 7-28 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Desenho de Fármacos , Peptídeos/química , Staphylococcus aureus/imunologia , Sequência de Aminoácidos , Anti-Inflamatórios/imunologia , Proteínas de Bactérias/síntese química , Proteínas de Bactérias/imunologia , Complemento C5a/antagonistas & inibidores , Complemento C5a/imunologia , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/imunologia , Ligação Proteica , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química
13.
Biochem Biophys Res Commun ; 391(1): 370-5, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19913513

RESUMO

Insight into the hyperthermostable endo-beta-1,3-glucanase pfLamA from Pyrococcus furiosus is obtained by using NMR spectroscopy. pfLamA functions optimally at 104 degrees C and recently the X-ray structure of pfLamA has been obtained at 20 degrees C, a temperature at which the enzyme is inactive. In this study, near-complete (>99%) NMR assignments are presented of chemical shifts of pfLamA in presence and absence of calcium at 62 degrees C, a temperature at which the enzyme is biologically active. The protein contains calcium and the effects of calcium on the protein are assessed. Calcium binding results in relatively small chemical shift changes in a region distant from the active site of pfLamA and thus causes only minor conformational modifications. Removal of calcium does not significantly alter the denaturation temperature of pfLamA, implying that calcium does not stabilize the enzyme against global unfolding. The data obtained form the basis for elucidation of the molecular origins involved in conformational stability and biological activity of hyperthermophilic endo-beta-1,3-glucanases at extreme temperatures.


Assuntos
Cálcio/química , Glucana Endo-1,3-beta-D-Glucosidase/química , Pyrococcus furiosus/enzimologia , Cristalografia por Raios X , Temperatura Alta , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica
14.
Chem Commun (Camb) ; (21): 2999-3001, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19462066

RESUMO

In this communication, a new site specific synthesis of highly functionalized and multiple sulfated peptides using convential Fmoc-tBu solid phase peptide synthesis is described.


Assuntos
Peptídeos/síntese química , Tirosina/química , Peptídeos/química
15.
J Biol Chem ; 284(18): 12363-72, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19251703

RESUMO

Complement component C5a is a potent pro-inflammatory agent inducing chemotaxis of leukocytes toward sites of infection and injury. C5a mediates its effects via its G protein-coupled C5a receptor (C5aR). Although under normal conditions highly beneficial, excessive levels of C5a can be deleterious to the host and have been related to numerous inflammatory diseases. A natural inhibitor of the C5aR is chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). CHIPS is a 121-residue protein excreted by S. aureus. It binds the N terminus of the C5aR (residues 1-35) with nanomolar affinity and thereby potently inhibits C5a-mediated responses in human leukocytes. Therefore, CHIPS provides a starting point for the development of new anti-inflammatory agents. Two O-sulfated tyrosine residues located at positions 11 and 14 within the C5aR N terminus play a critical role in recognition of C5a, but their role in CHIPS binding has not been established so far. By isothermal titration calorimetry, using synthetic Tyr-11- and Tyr-14-sulfated and non-sulfated C5aR N-terminal peptides, we demonstrate that the sulfate groups are essential for tight binding between the C5aR and CHIPS. In addition, the NMR structure of the complex of CHIPS and a sulfated C5aR N-terminal peptide reveals the precise binding motif as well as the distinct roles of sulfated tyrosine residues sY11 and sY14. These results provide a molecular framework for the design of novel CHIPS-based C5aR inhibitors.


Assuntos
Proteínas de Bactérias/química , Complexos Multiproteicos/química , Receptores de Complemento/química , Staphylococcus aureus/química , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptor da Anafilatoxina C5a , Receptores de Complemento/metabolismo , Sulfatos/química , Sulfatos/metabolismo , Tirosina/química , Tirosina/metabolismo
16.
Proteomics ; 4(1): 226-34, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14730684

RESUMO

Isotope labelling of proteins is important for progress in the field of structural proteomics. It enables the utilisation of the power of nuclear magnetic resonance spectroscopy (NMR) for the characterisation of the three-dimensional structures and corresponding dynamical features of proteins. The usual approach to obtain isotopically labelled protein molecules is by expressing the corresponding gene in bacterial or yeast host organisms, which grow on isotope-enriched media. This method has several drawbacks. Here, we demonstrate that it is possible to fully label a plant with (15)N-isotopes. The advantage of in vivo labelling of higher organisms is that all constituting proteins are labelled and become available as functional, post-translationally modified, correctly folded proteins. A hydroponics set-up was used to create the first example of a uniformly (15)N-labelled (> 98%) plant species, the potato plant (Solanum tuberosum L., cv. Elkana). Two plants were grown at low costs using potassium-[(15)N]-nitrate as the sole nitrogen source. At harvest time, a total of 3.6 kg of potato tubers and 1.6 kg of foliage, stolons and roots were collected, all of which were fully (15)N-labelled. Gram quantities of soluble (15)N-labelled proteins (composed mainly of the glycoprotein patatin and Kunitz-type protease inhibitors) were isolated from the tubers. NMR results on the complete proteome of potato sap and on an isolated protease inhibitor illustrate the success of the labelling procedure. The presented method of isotope labelling is easily modified to label other plants. Its envisioned impact in the field of structural proteomics of plants is discussed.


Assuntos
Proteoma/química , Proteômica , Solanum tuberosum/metabolismo , Coloração e Rotulagem , Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio/metabolismo , Proteoma/fisiologia , Solanum tuberosum/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Biol Chem ; 279(7): 5699-707, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14604984

RESUMO

The human plasma protein transthyretin (TTR) may form fibrillar protein deposits that are associated with both inherited and idiopathic amyloidosis. The present study utilizes solution nuclear magnetic resonance spectroscopy, in combination with hydrogen/deuterium exchange, to determine residue-specific solvent protection factors within the fibrillar structure of the clinically relevant variant, TTRY114C. This novel approach suggests a fibril core comprised of the six beta-strands, A-B-E-F-G-H, which retains a native-like conformation. Strands C and D are dislocated from their native edge region and become solvent-exposed, leaving a new interface involving strands A and B open for intermolecular interactions. Our results further support a native-like intermolecular association between strands F-F' and H-H' with a prolongation of these beta-strands and, interestingly, with a possible shift in beta-strand register of the subunit assembly. This finding may explain previous observations of a monomeric intermediate preceding fibril formation. A structural model based on our results is presented.


Assuntos
Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Pré-Albumina/química , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrogênio/química , Espectrometria de Massas , Microscopia de Força Atômica , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Espectrofotometria , Temperatura , Fatores de Tempo , Raios Ultravioleta
18.
Proc Natl Acad Sci U S A ; 99(13): 8648-53, 2002 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-12072564

RESUMO

Amyloid is the result of an anomalous protein and peptide aggregation, leading to the formation of insoluble fibril deposits. At present, 18 human diseases have been associated with amyloid deposits-e.g., Alzheimer's disease and Prion-transmissible Spongiform Encephalopathies. The molecular structure of amyloid is to a large extent unknown, because of lack of high-resolution structural information within the amyloid state. However, from other experimental data it has been established that amyloid fibrils predominantly consist of beta-strands arranged perpendicular to the fibril axis. Identification of residues involved in these secondary structural elements is therefore of vital importance to rationally designing appropriate inhibitors. We have designed a hydrogen/deuterium exchange NMR experiment that can be applied on mature amyloid to enable identification of the residues located inside the fibril core. Using a highly amyloidogenic peptide, corresponding to residues 25-35 within the Alzheimer Abeta(1-43) peptide, we could establish that residues 28-35 constitute the amyloid core, with residues 31 and 32 being the most protected. In addition, quantitative values for the solvent accessibility for each involved residue could be obtained. Based on our data, two models of peptide assembly are proposed. The method provides a general way to identify the core of amyloid structures and thereby pinpoint areas suitable for design of inhibitors.


Assuntos
Amiloide/química , Ressonância Magnética Nuclear Biomolecular/métodos , Solventes/química , Ligação de Hidrogênio , Microscopia de Força Atômica , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA