Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Adv ; 14(5): 2947-2960, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239454

RESUMO

Halloysite nanotubes (HNTs) were surface functionalized using four distinct chemical moieties (amidoxime, hydrazone, ethylenediamine (EDA), and diethylenetriamine (DETA)), producing modified HNTs (H1-H4) capable of binding with Cr(vi) ions. Advanced techniques like FTIR, XRD, SEM, and EDX provided evidence of the successful functionalization of these HNTs. Notably, the functionalization occurred on the surface of HNTs, rather than within the interlayer or lumen. These decorated HNTs were effective in capturing Cr(vi) ions at optimized sorption parameters, with adsorption rates ranging between 58-94%, as confirmed by atomic absorption spectroscopy (AAS). The mechanism of adsorption was further scrutinized through the Freundlich and Langmuir isotherms. Langmuir isotherms revealed the nearest fit to the data suggesting the monolayer adsorption of Cr(vi) ions onto the nanotubes, indicating a favorable adsorption process. It was hypothesized that Cr(vi) ions are primarily attracted to the amine groups on the modified nanotubes. Quantum chemical calculations further revealed that HNTs functionalized with hydrazone structures (H2) demonstrated a higher affinity (interaction energy -26.33 kcal mol-1) for the Cr(vi) ions. This can be explained by the formation of stronger hydrogen bonds with the NH moieties of the hydrazone moiety, than those established by the OH of oxime (H1) and longer amine chains (H3 and H4), respectively. Overall, the findings suggest that these decorated HNTs could serve as an effective and cost-efficient solution for treating water pollution.

2.
Int J Biol Macromol ; 256(Pt 1): 128363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000612

RESUMO

The cationic methylene blue (MB) dye sequestration was studied by using oxidized carboxymethyl cellulose-chitosan (OCMC-CS) and its composite films with silicon carbide (OCMC-CS-SiC), and silica-coated SiC nanoparticles (OCMC-CS-SiC@SiO2). The resulting composite films were characterized through various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray spectroscopy (EDS). The dye adsorption properties of the synthesized composite films were comprehensively investigated in batch experiments and the effect of parameters such as contact time, initial dye concentration, catalyst dosages, temperature, and pH were systematically evaluated. The results indicated that the film's adsorption efficiency was increased by increasing the contact time, catalyst amount, and temperature, and with a decreased initial concentration of dye solution. The adsorption efficiency was highest at neutral pH. The experimental results demonstrated that OCMC-CS films have high dye adsorption capabilities as compared to OCMC-CS-SiC, and OCMC-CS-SiC@SiO2. Additionally, the desorption investigation suggested that the adsorbents are successfully regenerated. Overall, this study contributes to the development of sustainable and effective adsorbent materials for dye removal applications. These films present a promising and environmentally friendly approach to mitigate dye pollution from aqueous systems.


Assuntos
Celulose Oxidada , Quitosana , Nanopartículas , Poluentes Químicos da Água , Quitosana/química , Azul de Metileno/química , Carboximetilcelulose Sódica/química , Dióxido de Silício , Celulose , Adsorção , Corantes/química , Poluentes Químicos da Água/química , Cinética , Nanopartículas/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Sci Rep ; 13(1): 13461, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596341

RESUMO

Bridges are among the most vulnerable structures to earthquake damage. Most bridges are seismically inadequate due to outdated bridge design codes and poor construction methods in developing countries. Although expensive, experimental studies are useful in evaluating bridge piers. As an alternative, numerical tools are used to evaluate bridge piers, and many numerical techniques can be applied in this context. This study employs Abaqus/Explicit, a finite element program, to model bridge piers nonlinearly and validate the proposed computational method using experimental data. In the finite element program, a single bridge pier having a circular geometry that is being subjected to a monotonic lateral load is simulated. In order to depict damages, Concrete Damage Plasticity (CDP), a damage model based on plasticity, is adopted. Concrete crushing and tensile cracking are the primary failure mechanisms as per CDP. The CDP parameters are determined by employing modified Kent and Park model for concrete compressive behavior and an exponential relation for tension stiffening. The performance of the bridge pier is investigated using an existing evaluation criterion. The influence of the stress-strain relation, the compressive strength of concrete, and geometric configuration are taken into consideration during the parametric analysis. It has been observed that the stress-strain relation, concrete strength, and configuration all have a significant impact on the column response.

4.
Sci Rep ; 13(1): 10770, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402783

RESUMO

The current research presents a novel and sustainable load-bearing system utilizing cellular lightweight concrete block masonry walls. These blocks, known for their eco-friendly properties and increasing popularity in the construction industry, have been studied extensively for their physical and mechanical characteristics. However, this study aims to expand upon previous research by examining the seismic performance of these walls in a seismically active region, where cellular lightweight concrete block usage is emerging. The study includes the construction and testing of multiple masonry prisms, wallets, and full-scale walls using a quasi-static reverse cyclic loading protocol. The behavior of the walls is analyzed and compared in terms of various parameters such as force-deformation curve, energy dissipation, stiffness degradation, deformation ductility factor, response modification factor, and seismic performance levels, as well as rocking, in-plane sliding, and out-of-plane movement. The results indicate that the use of confining elements significantly improves the lateral load capacity, elastic stiffness, and displacement ductility factor of the confined masonry wall in comparison to an unreinforced masonry wall by 102%, 66.67%, and 5.3%, respectively. Overall, the study concludes that the inclusion of confining elements enhances the seismic performance of the confined masonry wall under lateral loading.

5.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447513

RESUMO

Novel ultrafiltration (UF) polymer membranes were prepared to enhance the antifouling features and filtration performance. Several ultrafiltration polymer membranes were prepared by incorporating different concentrations of water-soluble cationic poly [2-(dimethyl amino) ethyl methacrylate] (PDMAEMA) into a homogenous casting solution of polyethersulfone (PES). After adding PDMAEMA, the effects on morphology, hydrophilicity, thermal stability, mechanical strength, antifouling characteristics, and filtration performance of these altered blended membranes were investigated. It was observed that increasing the quantity of PDMAEMA in PES membranes in turn enhanced surface energy, hydrophilicity, and porosity of the membranes. These new modified PES membranes, after the addition of PDMAEMA, showed better filtration performance by having increased water flux and a higher flux recovery ratio (FRR%) when compared with neat PES membranes. For the PES/PDMAEMA membrane, pure water flux with 3.0 wt.% PDMAEMA and 0.2 MPa pressure was observed as (330.39 L·m-2·h-1), which is much higher than that of the neat PES membrane with the value of (163.158 L·m-2·h-1) under the same conditions. Furthermore, the inclusion of PDMAEMA enhanced the antifouling capabilities of PES membranes. The total fouling ratio (TFR) of the fabricated PES/PDMAEMA membranes with 3.0 wt.% PDMAEMA at 0.2 MPa applied pressure was 36 percent, compared to 64.9 percent for PES membranes.

6.
Sci Rep ; 13(1): 4572, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941313

RESUMO

This article presents that acrylate copolymers are the potential candidate against the adsorption of bovine serum albumin (BSA). A series of copolymers poly(methyl methacrylate) (pMMA), poly(3-sulfopropyl methacrylate-co-methyl methacrylate) p(SPMA-co-MMA), and poly(dimethylaminoethyl methacrylate-co-methyl methacrylate) p(DMAEMA-co-MMA) were synthesized via free radical polymerization. These amphiphilic copolymers are thermally stable with a glass transition temperature (Tg) 50-120 °C and observed the impact of surface charge on amphiphilic copolymers to control interactions with the bovine serum albumin (BSA). These copolymers pMD1 and pMS1 have surface charges, - 56.6 and - 72.6 mV at pH 7.4 in PBS buffer solution that controls the adsorption capacity of bovine serum albumin (BSA) on polymers surface. Atomic force microscopy (AFM) analysis showed minimum roughness of 0.324 nm and 0.474 nm for pMS1 and pMD1. Kinetic studies for BSA adsorption on these amphiphilic copolymers showed the best fitting of the pseudo-first-order model that showed physisorption and attained at 25 °C and pH 7.4 within 24 h.


Assuntos
Polímeros , Soroalbumina Bovina , Cinética , Polimetil Metacrilato , Acrilatos , Metacrilatos
7.
Phytopathology ; 113(8): 1428-1438, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36945727

RESUMO

Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.

8.
Polymers (Basel) ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365710

RESUMO

The corrosion of steel reinforcement necessitates regular maintenance and repair of a variety of reinforced concrete structures. Retrofitting of beams, joints, columns, and slabs frequently involves the use of fiber-reinforced polymer (FRP) laminates. In order to develop simple prediction models for calculating the interfacial bond strength (IBS) of FRP laminates on a concrete prism containing grooves, this research evaluated the nonlinear capabilities of three ensemble methods­namely, random forest (RF) regression, extreme gradient boosting (XGBoost), and Light Gradient Boosting Machine (LIGHT GBM) models­based on machine learning (ML). In the present study, the IBS was the desired variable, while the model comprised five input parameters: elastic modulus x thickness of FRP (EfTf), width of FRP plate (bf), concrete compressive strength (fc'), width of groove (bg), and depth of groove (hg). The optimal parameters for each ensemble model were selected based on trial-and-error methods. The aforementioned models were trained on 70% of the entire dataset, while the remaining data (i.e., 30%) were used for the validation of the developed models. The evaluation was conducted on the basis of reliable accuracy indices. The minimum value of correlation of determination (R2 = 0.82) was observed for the testing data of the RF regression model. In contrast, the highest (R2 = 0.942) was obtained for LIGHT GBM for the training data. Overall, the three models showed robust performance in terms of correlation and error evaluation; however, the trend of accuracy was obtained as follows: LIGHT GBM > XGBoost > RF regression. Owing to the superior performance of LIGHT GBM, it may be considered a reliable ML prediction technique for computing the bond strength of FRP laminates and concrete prisms. The performance of the models was further supplemented by comparing the slopes of regression lines between the observed and predicted values, along with error analysis (i.e., mean absolute error (MAE), and root-mean-square error (RMSE)), predicted-to-experimental ratio, and Taylor diagrams. Moreover, the SHAPASH analysis revealed that the elastic modulus x thickness of FRP and width of FRP plate are the factors most responsible for IBS in FRP.

9.
Materials (Basel) ; 15(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363306

RESUMO

Climate change has become trending news due to its serious impacts on Earth. Initiatives are being taken to lessen the impact of climate change and mitigate it. Among the different initiatives, researchers are aiming to find suitable alternatives for cement. This study is a humble effort to effectively utilize industrial- and agricultural-waste-based pozzolanic materials in concrete to make it economical and environmentally friendly. For this purpose, a ternary blend of binders (i.e., cement, fly ash, and rice husk ash) was employed in concrete. Different variables such as the quantity of different binders, fine and coarse aggregates, water, superplasticizer, and the age of the samples were considered to study their influence on the compressive strength of the ternary blended concrete using gene expression programming (GEP) and artificial neural networking (ANN). The performance of these two models was evaluated using R2, RMSE, and a comparison of regression slopes. It was observed that the GEP model with 100 chromosomes, a head size of 10, and five genes resulted in an optimum GEP model, as apparent from its high R2 value of 0.80 and 0.70 in the TR and TS phase, respectively. However, the ANN model performed better than the GEP model, as evident from its higher R2 value of 0.94 and 0.88 in the TR and TS phase, respectively. Similarly, lower values of RMSE and MAE were observed for the ANN model in comparison to the GEP model. The regression slope analysis revealed that the predicted values obtained from the ANN model were in good agreement with the experimental values, as shown by its higher R2 value (0.89) compared with that of the GEP model (R2 = 0.80). Subsequently, parametric analysis of the ANN model revealed that the addition of pozzolanic materials enhanced the compressive strength of the ternary blended concrete samples. Additionally, we observed that the compressive strength of the ternary blended concrete samples increased rapidly within the first 28 days of casting.

10.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235187

RESUMO

Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br-), methanesulfonate (CH3SO3-), bis(trifluoromethanesulfonyl)imide (NTf2-), dichloroacetate (CHCl2CO2-), tetrafluoroborate (BF4-), and hydrogen sulfate (HSO4-) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2- and HSO4- anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2-) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.


Assuntos
Compostos de Amônio , Anti-Infecciosos Locais , Líquidos Iônicos , Ágar , Ânions/química , Antibacterianos/farmacologia , Brometos/química , Dióxido de Carbono , Cátions/química , Escherichia coli , Hidrocarbonetos Fluorados , Hidrogênio , Imidazóis/química , Imidazóis/farmacologia , Imidas , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Mesilatos , Preparações Farmacêuticas , Sulfatos
11.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234306

RESUMO

The useful life of a concrete structure is highly dependent upon its durability, which enables it to withstand the harsh environmental conditions. Resistance of a concrete specimen to rapid chloride ion penetration (RCP) is one of the tests to indirectly measure its durability. The central aim of this study was to investigate the influence of different variables, such as, age, amount of binder, fine aggregate, coarse aggregate, water to binder ratio, metakaolin content and the compressive strength of concrete on the RCP resistance using a genetic programming approach. The number of chromosomes (Nc), genes (Ng) and, the head size (Hs) of the gene expression programming (GEP) model were varied to study their influence on the predicted RCP values. The performance of all the GEP models was assessed using a variety of performance indices, i.e., R2, RMSE and comparison of regression slopes. The optimal GEP model (Model T3) was obtained when the Nc = 100, Hs = 8 and Ng = 3. This model exhibits an R2 of 0.89 and 0.92 in the training and testing phases, respectively. The regression slope analysis revealed that the predicted values are in good agreement with the experimental values, as evident from their higher R2 values. Similarly, parametric analysis was also conducted for the best performing Model T3. The analysis showed that the amount of binder, compressive strength and age of the sample enhanced the RCP resistance of the concrete specimens. Among the different input variables, the RCP resistance sharply increased during initial stages of curing (28-d), thus validating the model results.

12.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234310

RESUMO

The safety and economy of an infrastructure project depends on the material and design equations used to simulate the performance of a particular member. A variety of materials can be used in conjunction to achieve a composite action, such as a hollow steel section filled with concrete, which can be successfully utilized in the form of an axially loaded member. This study aims to model the ultimate compressive strength (Pu) of concrete-filled hollow steel sections (CFSS) by formulating a mathematical expression using gene expression programming (GEP). A total of 149 datapoints were obtained from the literature, considering ten input parameters, including the outer diameter of steel tube (D), wall thickness of steel tube, compressive strength of concrete (fc'), elastic modulus of concrete (Ec), yield strength of steel (fv), elastic modulus of steel (Es), length of the column (L), confinement factor (ζ), ratio of D to thickness of column, and the ratio of length to D of column. The performance of the developed models was assessed using coefficient of regression R2, root mean squared error RMSE, mean absolute error MAE and comparison of regression slopes. It was found that the optimal GEP Model T3, having number of chromosomes Nc = 100, head size Hs = 8 and number of genes Ng = 3, outperformed all the other models. For this particular model, R2overall equaled 0.99, RMSE values were 133.4 and 162.2, and MAE = 92.4 and 108.7, for training (TR) and testing (TS) phases, respectively. Similarly, the comparison of regression slopes analysis revealed that the Model T3 exhibited the highest R2 of 0.99 with m = 1, in both the TR and TS stages, respectively. Finally, parametric analysis showed that the Pu of composite steel columns increased linearly with the value of D, t and fy.

13.
Materials (Basel) ; 15(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079206

RESUMO

The depletion of natural resources of river sand and its availability issues as a construction material compelled the researchers to use manufactured sand. This study investigates the compressive strength of concrete made of manufactured sand as a partial replacement of normal sand. The prediction model, i.e., gene expression programming (GEP), was used to estimate the compressive strength of manufactured sand concrete (MSC). A database comprising 275 experimental results based on 11 input variables and 1 target variable was used to train and validate the developed models. For this purpose, the compressive strength of cement, tensile strength of cement, curing age, Dmax of crushed stone, stone powder content, fineness modulus of the sand, water-to-binder ratio, water-to-cement ratio, water content, sand ratio, and slump were taken as input variables. The investigation of a varying number of genetic characteristics, such as chromosomal number, head size, and gene number, resulted in the creation of 11 alternative models (M1-M11). The M5 model outperformed other created models for the training and testing stages, with values of (4.538, 3.216, 0.919) and (4.953, 3.348, 0.906), respectively, according to the results of the accuracy evaluation parameters root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The R2 and error indices values revealed that the experimental and projected findings are in extremely close agreement. The best model has 200 chromosomes, 8 head sizes, and 3 genes. The mathematical expression achieved from the GEP model revealed that six parameters, namely the compressive and tensile strength of cement, curing period, water−binder ratio, water−cement ratio, and stone powder content contributed effectively among the 11 input variables. The sensitivity analysis showed that water−cement ratio (46.22%), curing period (25.43%), and stone powder content (13.55%) were revealed as the most influential variables, in descending order. The sensitivity of the remaining variables was recorded as w/b (11.37%) > fce (2.35%) > fct (1.35%).

14.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079290

RESUMO

This study aimed to determine how radiation attenuation would change when the thickness, density, and compressive strength of clay bricks, modified with partial replacement of clay by fly ash, iron slag, and wood ash. To conduct this investigation, four distinct types of bricks-normal, fly ash-, iron slag-, and wood ash-incorporated bricks were prepared by replacing clay content with their variable percentages. Additionally, models for predicting the radiation-shielding ability of bricks were created using gene expression programming (GEP) and artificial neural networks (ANN). The addition of iron slag improved the density and compressive strength of bricks, thus increasing shielding capability against gamma radiation. In contrast, fly ash and wood ash decreased the density and compressive strength of burnt clay bricks, leading to low radiation shielding capability. Concerning the performance of the Artificial Intelligence models, the root mean square error (RMSE) was determined as 0.1166 and 0.1876 nC for the training and validation data of ANN, respectively. The training set values for the GEP model manifested an RMSE equal to 0.2949 nC, whereas the validation data produced RMSE = 0.3507 nC. According to the statistical analysis, the generated models showed strong concordance between experimental and projected findings. The ANN model, in contrast, outperformed the GEP model in terms of accuracy, producing the lowest values of RMSE. Moreover, the variables contributing towards shielding characteristics of bricks were studied using parametric and sensitivity analyses, which showed that the thickness and density of bricks are the most influential parameters. In addition, the mathematical equation generated from the GEP model denotes its significance such that it can be used to estimate the radiation shielding of burnt clay bricks in the future with ease.

15.
Materials (Basel) ; 15(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36143788

RESUMO

In order to forecast the axial load-carrying capacity of concrete-filled steel tubular (CFST) columns using principal component analysis (PCA), this work compares hybrid models of artificial neural networks (ANNs) and meta-heuristic optimization algorithms (MOAs). In order to create hybrid ANN models, a dataset of 149 experimental tests was initially gathered from the accessible literature. Eight PCA-based hybrid ANNs were created using eight MOAs, including artificial bee colony, ant lion optimization, biogeography-based optimization, differential evolution, genetic algorithm, grey wolf optimizer, moth flame optimization and particle swarm optimization. The created ANNs' performance was then assessed. With R2 ranges between 0.7094 and 0.9667 in the training phase and between 0.6883 and 0.9634 in the testing phase, we discovered that the accuracy of the built hybrid models was good. Based on the outcomes of the experiments, the generated ANN-GWO (hybrid model of ANN and grey wolf optimizer) produced the most accurate predictions in the training and testing phases, respectively, with R2 = 0.9667 and 0.9634. The created ANN-GWO may be utilised as a substitute tool to estimate the load-carrying capacity of CFST columns in civil engineering projects according to the experimental findings.

16.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080580

RESUMO

The goal of this work was to use a hybrid ensemble machine learning approach to estimate the interfacial bond strength (IFB) of fibre-reinforced polymer laminates (FRPL) bonded to the concrete using the results of a single shear-lap test. A database comprising 136 data was used to train and validate six standalone machine learning models, namely, artificial neural network (ANN), extreme machine learning (ELM), the group method of data handling (GMDH), multivariate adaptive regression splines (MARS), least square-support vector machine (LSSVM), and Gaussian process regression (GPR). The hybrid ensemble (HENS) model was subsequently built, employing the combined and trained predicted outputs of the ANN, ELM, GMDH, MARS, LSSVM, and GPR models. In comparison with the standalone models employed in the current investigation, it was observed that the suggested HENS model generated superior predicted accuracy with R2 (training = 0.9783, testing = 0.9287), VAF (training = 97.83, testing = 92.87), RMSE (training = 0.0300, testing = 0.0613), and MAE (training = 0.0212, testing = 0.0443). Using the training and testing dataset to assess the predictive performance of all models for IFB prediction, it was discovered that the HENS model had the greatest predictive accuracy throughout both stages with an R2 of 0.9663. According to the findings of the experiments, the newly developed HENS model has a great deal of promise to be a fresh approach to deal with the overfitting problems of CML models and thus may be utilised to forecast the IFB of FRPL.

17.
Materials (Basel) ; 15(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955178

RESUMO

Nowadays, concretes blended with pozzolanic additives such as fly ash (FA), silica fume (SF), slag, etc., are often used in construction practices. The utilization of pozzolanic additives and industrial by-products in concrete and grouting materials has an important role in reducing the Portland cement usage, the CO2 emissions, and disposal issues. Thus, the goal of the present work is to estimate the compressive strength (CS) of polyethylene terephthalate (PET) and two supplementary cementitious materials (SCMs), namely FA and SF, blended cementitious grouts to produce green mix. For this purpose, five hybrid least-square support vector machine (LSSVM) models were constructed using swarm intelligence algorithms, including particle swarm optimization, grey wolf optimizer, salp swarm algorithm, Harris hawks optimization, and slime mold algorithm. To construct and validate the developed hybrid models, a sum of 156 samples were generated in the lab with varying percentages of PET and SCM. To estimate the CS, five influencing parameters, namely PET, SCM, FLOW, 1-day CS (CS1D), and 7-day CS (CS7D), were considered. The performance of the developed models was assessed in terms of multiple performance indices. Based on the results, the proposed LSSVM-PSO (a hybrid model of LSSVM and particle swarm optimization) was determined to be the best performing model with R2 = 0.9708, RMSE = 0.0424, and total score = 40 in the validation phase. The results of sensitivity analysis demonstrate that all the input parameters substantially impact the 28-day CS (CS28D) of cementitious grouts. Among them, the CS7D has the most significant effect. From the experimental results, it can be deduced that PET/SCM has no detrimental impact on CS28D of cementitious grouts, making PET a viable alternative for generating sustainable and green concrete. In addition, the proposed LSSVM-PSO model can be utilized as a novel alternative for estimating the CS of cementitious grouts, which will aid engineers during the design phase of civil engineering projects.

18.
Polymers (Basel) ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956611

RESUMO

The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM-HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.

19.
Polymers (Basel) ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893956

RESUMO

In recent times, the use of fibre-reinforced plastic (FRP) has increased in reinforcing concrete structures. The bond strength of FRP rebars is one of the most significant parameters for characterising the overall efficacy of the concrete structures reinforced with FRP. However, in cases of elevated temperature, the bond of FRP-reinforced concrete can deteriorate depending on a number of factors, including the type of FRP bars used, its diameter, surface form, anchorage length, concrete strength, and cover thickness. Hence, accurate quantification of FRP rebars in concrete is of paramount importance, especially at high temperatures. In this study, an artificial intelligence (AI)-based genetic-expression programming (GEP) method was used to predict the bond strength of FRP rebars in concrete at high temperatures. In order to predict the bond strength, we used failure mode temperature, fibre type, bar surface, bar diameter, anchorage length, compressive strength, and cover-to-diameter ratio as input parameters. The experimental dataset of 146 tests at various elevated temperatures were established for training and validating the model. A total of 70% of the data was used for training the model and remaining 30% was used for validation. Various statistical indices such as correlation coefficient (R), the mean absolute error (MAE), and the root-mean-square error (RMSE) were used to assess the predictive veracity of the GEP model. After the trials, the optimum hyperparameters were 150, 8, and 4 as number of chromosomes, head size and number of genes, respectively. Different genetic factors, such as the number of chromosomes, the size of the head, and the number of genes, were evaluated in eleven separate trials. The results as obtained from the rigorous statistical analysis and parametric study show that the developed GEP model is robust and can predict the bond strength of FRP rebars in concrete under high temperature with reasonable accuracy (i.e., R, RMSE and MAE 0.941, 2.087, and 1.620, and 0.935, 2.370, and 2.046, respectively, for training and validation). More importantly, based on the FRP properties, the model has been translated into traceable mathematical formulation for easy calculations.

20.
Polymers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808585

RESUMO

The fouling of surfaces such as textiles is a major health challenge, and there is a continuous effort to develop materials and processes to overcome it. In consideration of this, this study regards the development of antifouling functional nanoencapsulated finishing for the cotton textile fabric by employing a layer-by-layer dip coating technique. Antifouling textile finishing was formulated by inducing the nanoencapsulation of the antifouling functional group inside the hydrophobic polymeric shell. Cotton fabric was taken as a substrate to incorporate antibacterial functionality by alternatively fabricating multilayers of antifouling polymeric formulation (APF) and polyelectrolyte solution. The surface morphology of nanoencapsulated finished textile fabric was characterized through scanning electron microscopy to confirm the uniform distribution of nanoparticles on the cotton textile fabric. Optical profilometry and atomic force microscopy studies indicated increased surface roughness in the coated textile substrate as compared to the uncoated textile. The surface thickness of the fabricated textile increased with the number of deposited bilayers on the textile substrate. Surface hydrophobicity increased with number of coating bilayers with θ values of x for single layer, up to y for 20 bilayers. The antibacterial activity of the uncoated and layer-by-layer coated finished textile was also evaluated. It was significant and exhibited a significant zone of inhibition against microbial strains Gram-positive S. aureus and Gram-negative E. coli. The bilayer coating exhibited water repellency, hydrophobicity, and antibacterial activity. Thus, the fabricated textile could be highly useful for many industrial and biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...