Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 209, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519997

RESUMO

Salinity stress can significantly delay plant growth. It can disrupt water and nutrient uptake, reducing crop yields and poor plant health. The use of strigolactone can be an effective technique to overcome this issue. Strigolactone enhances plant growth by promoting root development and improvement in physiological attributes. The current pot study used strigolactone to amend chili under no salinity and salinity stress environments. There were four treatments, i.e., 0, 10µM strigolactone, 20µM strigolactone and 30µM strigolactone. All treatments were applied in four replications following a completely randomized design (CRD). Results showed that 20µM strigolactone caused a significant increase in chili plant height (21.07%), dry weight (33.60%), fruit length (19.24%), fruit girth (35.37%), and fruit yield (60.74%) compared to control under salinity stress. Significant enhancement in chili chlorophyll a (18.65%), chlorophyll b (43.52%), and total chlorophyll (25.09%) under salinity stress validated the effectiveness of 20µM strigolactone application as treatment over control. Furthermore, improvement in nitrogen, phosphorus, and potassium concentration in leaves confirmed the efficient functioning of 20µM strigolactone compared to other concentrations under salinity stress. The study concluded that 20µM strigolactone is recommended for mitigating salinity stress in chili plants. Growers are advised to apply 20µM strigolactone to enhance their chili production under salinity stress.


Assuntos
Capsicum , Compostos Heterocíclicos com 3 Anéis , Cânfora , Clorofila A , Lactonas , Mentol , Salinidade , Estresse Salino
2.
BMC Plant Biol ; 24(1): 36, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191323

RESUMO

Maize cultivated for dry grain covers approximately 197 million hectares globally, securing its position as the second most widely grown crop worldwide after wheat. Although spermidine and biochar individually showed positive impacts on maize production in existing literature, their combined effects on maize growth, physiology, nutrient uptake remain unclear and require further in-depth investigation. That's why a pot experiment was conducted on maize with spermidine and potassium enriched biochar (KBC) as treatments in Multan, Pakistan, during the year 2022. Four levels of spermidine (0, 0.15, 0.30, and 0.45mM) and two levels of potassium KBC (0 and 0.50%) were applied in completely randomized design (CRD). Results showed that 0.45 mM spermidine under 0.50% KBC caused significant enhancement in maize shoot length (11.30%), shoot fresh weight (25.78%), shoot dry weight (17.45%), root length (27.95%), root fresh weight (26.80%), and root dry weight (20.86%) over control. A significant increase in maize chlorophyll a (50.00%), chlorophyll b (40.40%), total chlorophyll (47.00%), photosynthetic rate (34.91%), transpiration rate (6.51%), and stomatal conductance (15.99%) compared to control under 0.50%KBC validate the potential of 0.45 mM spermidine. An increase in N, P, and K concentration in the root and shoot while decrease in electrolyte leakage and antioxidants also confirmed that the 0.45 mM spermidine performed more effectively with 0.50%KBC. In conclusion, 0.45 mM spermidine with 0.50%KBC is recommended for enhancing maize growth.


Assuntos
Potássio , Zea mays , Clorofila A , Espermidina/farmacologia
3.
Sci Rep ; 13(1): 2022, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739452

RESUMO

Zinc (Zn) deficiency is a major health concern in developing countries due to dependency on cereal based diet. Cereals are inherently low in Zn and inevitable use of stressed land has further elevated the problem. The aim of current research was to improve wheat and rice grains grain Zn concentration grown in saline soils through zinc oxide nanoparticles (ZnO-NPs) due to their perspective high availability. The ZnO-NPs were prepared by co-precipitation method and characterized through X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). Two separate pot experiments for wheat and rice were conducted to check the relative effectiveness of ZnO-NPs compared to other bulk Zn sources i.e., zinc sulphate heptahydrate (ZnSO4·7H2O) and ZnO. Results showed that salt stress negatively impacted the tested parameters. There was a significant (p ≤ 0.05) improvement in growth, salt tolerance, plant Zn uptake and grain Zn concentrations by Zn application through Zn sources. The ZnO-NPs showed maximum improvement in crops parameters as compared to other sources due to their higher uptake and translocation in plants under both normal and stressed soil conditions. Thus, ZnO nanoparticles proved to be more effective for grain Zn fortification in both tested wheat and rice crops under normal and saline conditions.


Assuntos
Oryza , Poluentes do Solo , Óxido de Zinco , Zinco/análise , Triticum , Sulfato de Zinco , Grão Comestível/química , Produtos Agrícolas , Estresse Salino , Solo , Poluentes do Solo/análise
4.
Environ Pollut ; 281: 116950, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819670

RESUMO

Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Água Potável/análise , Halogenação , Humanos , Trialometanos/análise , Poluentes Químicos da Água/análise
5.
Plants (Basel) ; 9(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114781

RESUMO

Humus is the stable form of added crop and animal residues. The organic matter after a long-term decomposition process converts into humic substances. The naturally occurring humus is present in less amount in soils of the arid and semi-arid regions. The addition of commercially available humic acid can, therefore, contribute to improving soil health and crop yields. The present study was conducted to evaluate the effect of potassium humate, applied through soil seed dressing, on cotton productivity and fiber quality attributes. Seed dressing with potassium humate was done at the rate of 0, 100, 150 and 200 mL kg-1 seed while in soil potassium humate was applied at the rate of 0, 10, 20 and 30 L ha-1. Results showed that the combined application of potassium humate by seed dressing and through soil application improved the soil properties, productivity and fiber quality traits of cotton. All levels of soil applied potassium humate (10, 20 and 30 L ha-1) performed better over seed dressing in terms of cotton productivity and fiber quality attributes. Among the soil application rates, 20 L ha-1 potassium humate proved better as compared to other rates (0, 10 and 30 L ha-1). Higher soil application of potassium humate (30 L ha-1) showed depressing effects on all the traits studied like the reduction of 12.4% and 6.6% in Ginning out turn and fiber length, respectively, at a seeding dressing of 200 mL kg-1. In conclusion, potassium humate seed dressing and soil application at the rate of 200 mL kg-1 and 20 L ha-1, respectively, is a better approach to improve cotton productivity. Soil potassium humate should not exceed a rate of 20 L ha-1 when the seed dressing of potassium is also practiced.

6.
Environ Sci Pollut Res Int ; 27(34): 42369-42389, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32864714

RESUMO

Dechlorane Plus (DP) is an unregulated, highly chlorinated flame retardant. It has been manufactured from past 40 years but its presence in the environment was initially reported in 2006. Later, it has been found in various biotic and abiotic environmental matrices. However, little attention has been paid to monitor its presence in Asia. Many studies have reported the occurrence of DP in the environment of Asia, yet the data are scarce, and studies are limited to few regions. The objective of present review is to summarize the occurrence, distribution, and toxicity of this ubiquitous pollutant in various environmental matrices (biotic and abiotic). DP has also been reported in the areas with no emission sources, which proves its long-range transport. Moreover, urbanization and industrialization also affect the distribution of DP, i.e., high levels of DP have been found in urban areas relative to the rural. Tidal movement also incorporates in transport of DP across the aquatic system. Further, bioaccumulation trend of DP in various tissues is kidney > liver > muscle tissues, whereas, blood brain barrier resists its accumulation in brain tissues. Additionally, gender-based accumulation trends revealed high DP levels in females in comparison to males due to strong metabolism of males. Furthermore, methodological aspects and instrumental analysis used in previous studies have also been summarized here. However, data on biomagnification in aquatic ecosystem and bioaccumulation of DP in terrestrial food web are still scarce. Toxicity behavior of syn-DP and anti-DP is still unknown which might gain the interest for future studies.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Hidrocarbonetos Clorados , Compostos Policíclicos , Ásia , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Feminino , Retardadores de Chama/análise , Hidrocarbonetos Clorados/análise , Compostos Policíclicos/análise
7.
Sci Total Environ ; 739: 140101, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531684

RESUMO

The pandemic outbreak of the novel coronavirus epidemic disease (COVID-19) is spreading like a diffusion-reaction in the world and almost 208 countries and territories are being affected around the globe. It became a sever health and socio-economic problem, while the world has no vaccine to combat this virus. This research aims to analyze the connection between the fast spread of COVID-19 and regional climate parameters over a global scale. In this research, we collected the data of COVID-19 cases from the time of 1st reported case to the 5th June 2020 in different affected countries and regional climatic parameters data from January 2020 to 5th June 2020. It was found that most of the countries located in the relatively lower temperature region show a rapid increase in the COVID-19 cases than the countries locating in the warmer climatic regions despite their better socio-economic conditions. A correlation between metrological parameters and COVID-19 cases was observed. Average daylight hours are correlated to total the COVID-19 cases with a coefficient of determination of 0.42, while average high-temperature shows a correlation of 0.59 and 0.42 with total COVID-19 cases and death cases respectively. The finding of the study will help international health organizations and local administrations to combat and well manage the spread of COVID-19.


Assuntos
Betacoronavirus , Clima , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral , COVID-19 , Humanos , SARS-CoV-2 , Fatores Socioeconômicos
9.
Environ Sci Pollut Res Int ; 27(32): 39786-39794, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32285386

RESUMO

Fruits are the valuable and important components of human diet. Among them, Prunus persica is a rich source of different minerals and dietary fibers. In Pakistan, the total annual production of P. persica is approximately 837,000 tons. In order to enhance agricultural yield and quality, the plant protection agents are employed during fruit production. Ultimately, this in turn leads to the incorporation of pesticide residues in fruits. In present study, an effort has been made for the determination of three selected pesticide residues, i.e., chlorpyrifos (CPF), difenoconazole (DFN), and carbendazim (CRB) in samples of P. persica collected from Swat territory. Samples were analyzed through high performance liquid chromatography (HPLC). Results revealed the occurrence of all three pesticides in studied samples; however, levels of CPF and DFN were found to be higher than MRLs. Moreover, the effects of different mitigation techniques revealed that highest reduction of CPF, DFN, and CRB (86%, 97%, 89%) residues was obtained by treatment with 10% CH3COOH followed by 10% NaCl (74%, 78%, 84%). The lowest reduction was obtained by treatment with 10% solution of NaOH (52%, 55%, 63%).


Assuntos
Resíduos de Praguicidas , Prunus persica , Contaminação de Alimentos/análise , Frutas/química , Humanos , Paquistão , Resíduos de Praguicidas/análise
10.
Environ Monit Assess ; 192(4): 204, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32124056

RESUMO

Pharmaceuticals are chemical compounds employed as medicinal drugs. They have severe physic-chemical properties which make them destructive for non-target species. Consequently, their continuous addition in the environment may pose hazardous effects. Among these, diclofenac (DCF), a non-steroidal anti-inflammatory drug (NSAID), is extensively used in Pakistan which may lead to its accumulation in both terrestrial and aquatic environment. Present study aims to assess the presence and concentration of pharmaceutically active drug (DCF) in surface water and wastewater of twin cities of Pakistan (Rawalpindi and Islamabad). For this purpose, a validated high-performance liquid chromatography (HPLC) method was adopted involving solid-phase extraction procedure. Wastewater samples were collected from various sites of Rawalpindi and Islamabad. Results of HPLC analysis revealed that DCF was extant with considerably high concentration, not only in wastewater but also in surface water samples. Concentrations as high as 216 µg L-1 was detected in Rawat industrial area and low as 8 µg L-1 was detected in dairy farm wastewater samples collected from Taramri. However, maximum DCF levels in residential wastewater and hospital wastewater were detected to be 105 µg L-1 and 34 µg L-1, respectively. Moreover, the highest detected level (116 µg L-1) was found in surface water of Sawan River. Further, results of ecological risk assessment revealed its possible toxic effects of DCF on various aquatic organisms.


Assuntos
Diclofenaco , Preparações Farmacêuticas , Poluentes Químicos da Água , Cidades , Diclofenaco/análise , Ecossistema , Monitoramento Ambiental , Paquistão , Preparações Farmacêuticas/análise , Medição de Risco , Águas Residuárias , Poluentes Químicos da Água/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-30326666

RESUMO

A river water quality spatial profile has a diverse pattern of variation over different climatic regions. To comprehend this phenomenon, our study evaluated the spatial scale variation of the Water Quality Index (WQI). The study was carried out over four main climatic classes in Asia based on the Koppen-Geiger climate classification system: tropical, temperate, cold, and arid. The one-dimensional surface water quality model, QUAL2Kw was selected and compared for water quality simulations. Calibration and validation were separately performed for the model predictions over different climate classes. The accuracy of the water quality model was assessed using different statistical analyses. The spatial profile of WQI was calculated using model predictions based on dissolved oxygen (DO), biological oxygen demand (BOD), nitrate (NO3), and pH. The results showed that there is a smaller longitudinal variation of WQI in the cold climatic regions than other regions, which does not change the status of WQI. Streams from arid, temperate, and tropical climatic regions show a decreasing trend of DO with respect to the longitudinal profiles of main river flows. Since this study found that each climate zone has the different impact on DO dynamics such as reaeration rate, reoxygenation, and oxygen solubility. The outcomes obtained in this study are expected to provide the impetus for developing a strategy for the viable improvement of the water environment.


Assuntos
Clima , Modelos Teóricos , Rios/química , Qualidade da Água , Ásia , Análise da Demanda Biológica de Oxigênio , Nitratos/análise , Oxigênio , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA