Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Mater Au ; 3(6): 659-668, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089657

RESUMO

Mesoporous silica particles (MSPs) have been studied for their potential therapeutic uses in controlling obesity and diabetes. Previous studies have shown that the level of digestion of starch by α-amylase is considerably reduced in the presence of MSPs, and it has been shown to be caused by the adsorption of α-amylase by MSPs. In this study, we tested a hypothesis of enzymatic deactivation and measured the activity of α-amylase together with MSPs (SBA-15) using comparably small CNP-G3 (2-chloro-4-nitrophenyl alpha-d-maltotrioside) as a substrate. We showed that pore-incorporated α-amylase was active and displayed higher activity and stability compared to amylase in solution (the control). We attribute this to physical effects: the coadsorption of CNP-G3 on the MSPs and the relatively snug fit of the amylase in the pores. Biosorption in this article refers to the process of removal or adsorption of α-amylase from its solution phase into the same solution dispersed in, or adsorbed on, the MSPs. Large quantities of α-amylase were biosorbed (about 21% w/w) on the MSPs, and high values of the maximum reaction rate (Vmax) and the Michaelis-Menten constant (KM) were observed for the enzyme kinetics. These findings show that the reduced enzymatic activity for α-amylase on MSP observed here and in earlier studies was related to the large probe (starch) being too large to adsorb in the pores, and potato starch has indeed a hydrodynamic diameter much larger than the pore sizes of MSPs. Further insights into the interactions and environments of the α-amylase inside the MSPs were provided by 1H fast magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and 13C/15N dynamic nuclear polarization MAS NMR experiments. It could be concluded that the overall fold and solvation of the α-amylase inside the MSPs were nearly identical to those in solution.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36731867

RESUMO

Mesoporous silica particles (MSPs) can be used as food additives, clinically for therapeutic applications, or as oral delivery vehicles. It has also been discussed to be used for a number of novel applications including treatment for diabetes and obesity. However, a major question for their possible usage has been if these particles persist structurally and retain their effect when passing through the gastrointestinal tract (GIT). A substantial breaking down of the particles could reduce function and be clinically problematic for safety issues. Hence, we investigated the biostability of MSPs of the SBA-15 kind prepared at large scales (100 and 1000 L). The MSPs were orally administered in a murine model and clinically in humans. A joint extraction and calcination method was developed to recover the MSPs from fecal mass, and the MSPs were characterized physically, structurally, morphologically, and functionally before and after GIT passage. Analyses with N2 adsorption, X-ray diffraction, electron microscopy, and as a proxy for general function, adsorption of the enzyme α-amylase, were conducted. The adsorption capacity of α-amylase on extracted MSPs was not reduced as compared to the pristine and control MSPs, and adsorption of up to 17% (w/w) was measured. It was demonstrated that the particles did not break down to any substantial degree and retained their function after passing through the GITs of the murine model and in humans. The fact the particles were not absorbed into the body was ascribed to that they were micron-sized and ingested as agglomerates and too big to pass the intestinal barrier. The results strongly suggest that orally ingested MSPs can be used for a number of clinical applications.

3.
J Prosthet Dent ; 130(6): 866-876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35153064

RESUMO

STATEMENT OF PROBLEM: A novel zirconia-alumina composite (ZAC) particle has yet to be studied for airborne-particle abrasion in a bonding protocol for the zirconia surface. PURPOSE: The purpose of this in vitro study was to evaluate the shear bond force of resin cement to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) when using spherical ZAC particles to conduct airborne-particle abrasion and modify the topography of Y-TZP. MATERIAL AND METHODS: Spherical 30- to 70-µm ZAC particles were fabricated by using a hybrid gel technique. A total of 160 Ø6.6×4.0-mm zirconia disks were fabricated from 4 commercially available zirconia blanks, e.max ZirCAD zirconia (EM), NexxZr T zirconia (NE), Lava Plus High Translucency zirconia (LP), and Imagine High Translucency Zirconia (IM), by using computer-aided manufacturing technology. As-sintered specimens without further surface treatment were used as controls (ZR0). Surface treatment groups included sharp-edged alumina airborne-particle abrasion (ABC), 50 µm, 0.2 MPa; airborne-particle abrasion with ZAC particle at 0.2 MPa (2ZA); and airborne-particle abrasion with spherical ZAC particle at 0.4 MPa (4ZA). All surface treatment groups were airborne-particle abraded at the specified pressures for 10 seconds at a standardized distance of 10 mm. The surface roughness (Ra) and area roughness (Sa) of specimens from each group were measured. Following the application of an adhesive (Scotchbond Universal), Ø6.6×4.0-mm resin cement (RelyX Ultimate) buttons were fabricated for shear bond testing by using a universal testing machine at a 5-mm/min crosshead speed (n=10). The data were analyzed by using a 2-way ANOVA, Tukey HSD test, and regression analysis (α=0.05). Scanning electron microscopy (SEM) was performed to observe changes of the zirconia surface and the failure modes of each group before and after shear bond testing. RESULTS: The mean ±standard deviation shear bond force values ranged from 272.6 ±41.4 N to 686.7 ±152.8 N. Statistically significant higher force values than those of the controls (P<.05) were obtained by using airborne-particle abrasion. No significant differences were found among any of the airborne-particle abrasion treatment groups (P>.05). The mean of Ra values ranged from 0.27 µm to 0.74 µm, and the mean of Sa values, from 0.48 µm to 1.48 µm. SEM observation revealed that the zirconia surface was made jagged by abrasion with sharp-edged alumina particles. The spherical ZAC particles create microcraters on the zirconia surface. Fractographic observation disclosed that failures were adhesive-cohesive failure modes with residual resin cement attached on the zirconia surface. CONCLUSIONS: The surface treatment of zirconia with sharp-edged alumina or the spherical ZAC abrasives improved the bonding force between the zirconia and resin cement. No statistically significant differences in shear bond force values were found between airborne-particle abrasion surface treatment groups.


Assuntos
Colagem Dentária , Materiais Dentários , Materiais Dentários/química , Cimentos de Resina/química , Propriedades de Superfície , Cerâmica/química , Zircônio/química , Óxido de Alumínio/química , Teste de Materiais , Resistência ao Cisalhamento , Análise do Estresse Dentário
4.
Micromachines (Basel) ; 13(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35208322

RESUMO

In this article, two distinct kinds of metamaterial (MTM) antennas are proposed for fifth-generation (5G) indoor distributed antenna systems (IDAS). Both antennas operate in the sub-6 GHz 5G band, i.e., 3.5 GHz. The antenna's radiating structure is based on a combination of triangular and rectangular patches, as well as two complementary split-ring resonators (CSRR) unit-cells etched on the top layer. The bottom layer of the first MTM antenna is a complete ground plane, while the bottom layer of the second MTM antenna is etched by a 3 × 3 cross-slot MTM structure on the ground plane. The use of these structures on the ground plane improves the antenna bandwidth. The proposed antennas are designed using two different substrates i.e., a high-end Rogers thermoset microwave materials (TMM4) substrate (h = 1.524 mm/εr = 4.5/tan δ = 0.002) and a low-end flame-resistant (FR4) epoxy glass substrate (h = 1.6 mm/εr = 4.3/tan δ = 0.025), respectively. The antenna designs are simulated using CST microwave studio, and in the end, the antenna fabrication is performed using FR4 substrate, and the results are compared. Furthermore, parametric analysis and comparative studies are carried out to investigate the performance of the designed antennas. The simulated and measured results are presented for various parameters such as return-loss, gain, and radiation pattern. The two MTM antennas have an overall dimension of 18 × 34 mm2, demonstrating that the proposed design is 60 percent smaller than a standard microstrip patch antenna (MPA). The two proposed MTM antenna designs with complete ground plane and 3 × 3 cross-slot MTM on the bottom layer using FR4 substrate have a measured gain/bandwidth characteristic of 100 MHz/2.6 dBi and 700 MHz/2.3 dBi, respectively.

5.
Materials (Basel) ; 14(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771939

RESUMO

Biocompatibility of yttria (3 mol%) stabilized zirconia ceramics, 3Y-TZP, was affected to a large degree as a result of protein adsorption from human saliva that in turn depends on materials surface properties. Variable nano-roughness levels in 3Y-TZP discs were characterized and tested for specificity and selectivity with respect to size and uptake for human salivary protein.

6.
J Hazard Mater ; 411: 124992, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454572

RESUMO

Owing to the threat of cadmium (Cd2+) to public health, it is an urgent demand to develop effective, sensitive, and rapid methods for the detection of cadmium. In this study, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and immunochromatographic test strips (ICTS) were established for the determination of Cd2+ based on the obtained mAb with high specificity and high affinity (Kaff = 3.0 × 109 L/moL). The linear range of ic-ELISA detection was 0.03-1.11 ng/mL and 50% inhibitive concentration (IC50) of cadmium ion was determined to be 0.15 ng/mL. The visual limit of detection (vLOD) of the AuNS-based strip was 0.375 ng/mL. The vLOD of AuNF-based strip using higher intensity reporter determined to be 0.03 ng/mL, which was enhanced 12 times compared to the traditional strip. In summary, the developed immunoassays based on mAb shows great potential for monitoring the cadmium ion in environmental samples.


Assuntos
Anticorpos Monoclonais , Cádmio , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Limite de Detecção
7.
PLoS One ; 15(10): e0240030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33007031

RESUMO

BACKGROUND: Precisely engineered mesoporous silica has been shown to induce weight loss in mice, but whether it is safe to use in humans have not investigated. OBJECTIVE: The aim was to determine whether oral dosing, up to 9 grams/day, of precisely engineered mesoporous silica as a food additive can be used safely in male humans. DESIGN: This single blinded safety study consisted of two study arms including 10 males each (18-35 years). One arm consisted of participants with normal weight and one with obesity. After a placebo run-in period, all subjects were given porous silica three times daily, with increasing dose up to 9 grams/day (Phase 1). Subjects with obesity continued the study with highest dose for additional 10 weeks (Phase 2). RESULTS: All participants completed Phase 1 and 90% completed Phase 2, with approximately 1% missed doses. Participants reported no abdominal discomfort, and changes in bowel habits were minor and inconsistent. The side effects observed were mild and tolerable, biomarkers did not give any safety concern, and no severe adverse events occurred. CONCLUSION: Mesoporous silica intake of up to 9 grams/day can be consumed by males without any major adverse events or safety concerns.


Assuntos
Segurança , Dióxido de Silício/administração & dosagem , Dióxido de Silício/efeitos adversos , Administração Oral , Adulto , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Esvaziamento Gástrico/efeitos dos fármacos , Hábitos , Humanos , Masculino , Porosidade , Dióxido de Silício/urina , Adulto Jovem
8.
Nanomedicine (Lond) ; 15(2): 131-144, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31933414

RESUMO

Aim: Obesity is a risk factor for cardiovascular disease and diabetes. We aimed to elucidate the effects of distinct mesoporous silica particles (MSPs) supplemented in food on metabolic parameters in obesity. Materials & methods: MSPs with precisely controlled pore size were synthesized, characterized and compared with a control in a C57Bl/6 mouse diet-induced obesity model, studying weight, adiposity, metabolic regulation and food efficiency. Results: The most effective MSPs reduced adipose tissue formation to 6.5 ± 0.5 g compared with 9.4 ± 1.2 g, leptin levels nearly halved from 32.8 ± 7.4 to 16.9 ± 1.9 ng/ml and a 33% reduction of food efficiency. Control MSP showed no effects. Conclusion: Results demonstrate potential of distinct MSPs to improve metabolic risk factors. Further studies investigating mechanism of action and confirming human safety are needed.


Assuntos
Nanopartículas/química , Obesidade/tratamento farmacológico , Dióxido de Silício/farmacologia , Aumento de Peso/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Dióxido de Silício/química
9.
Int J Biol Macromol ; 146: 243-252, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891704

RESUMO

Starch/chitosan modified polyurethanes (PUs) were synthesized by step growth polymerization reaction between -NCO terminated prepolymer and chain extenders (1,4-Butanediol/starch/chitosan). Isophorone diisocyanate (IPDI) was reacted with hydroxyl-terminated polybutadiene (HTPB) to synthesize prepolymer and was further reacted with different moles ratio of starch/chitosan to produced five samples of polyurethane (PU). These samples were characterized by Fourier transformed infrared (FTIR) and Proton nuclear magnetic resonance (1H NMR) spectroscopy. The surface characterizations of PUs were done by scanning electron microscope (SEM). Thermogravimetric analysis showed that the thermal stability of PUs was higher when the mixture of both natural materials was used at equal amounts. It is concluded that combination of both starch and chitosan are efficient for the synthesis of PUs.


Assuntos
Quitosana/química , Poliuretanos/química , Amido/química
10.
Adv Sci (Weinh) ; 6(4): 1801650, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828534

RESUMO

Liquid chromophores constitute a rare but intriguing class of molecules that are in high demand for the design of luminescent inks, liquid semiconductors, and solar energy storage materials. The most common way to achieve liquid chromophores involves the introduction of long alkyl chains, which, however, significantly reduces the chromophore density. Here, strategy is presented that allows for the preparation of liquid chromophores with a minimal increase in molecular weight, using the important class of perylenes as an example. Two synergistic effects are harnessed: (1) the judicious positioning of short alkyl substituents, and (2) equimolar mixing, which in unison results in a liquid material. A series of 1-alkyl perylene derivatives is synthesized and it is found that short ethyl or butyl chains reduce the melting temperature from 278 °C to as little as 70 °C. Then, two low-melting derivatives are mixed, which results in materials that do not crystallize due to the increased configurational entropy of the system. As a result, liquid chromophores with the lowest reported molecular weight increase compared to the neat chromophore are obtained. The mixing strategy is readily applicable to other π-conjugated systems and, hence, promises to yield a wide range of low molecular weight liquid chromophores.

11.
Int J Biol Macromol ; 122: 969-996, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342145

RESUMO

Maize or corn is considered as very distinctive plant. Corn having better capability of utilizing sun light, is a noble way of getting a natural polymer known as starch. Amylopectin and amylase composition in the starch firmly affects the properties of the polysaccharide. Despite of application of CS as food for living being including the human and animals it has many other applications in industry. No doubt it has many flaws which can be controlled by adopting different modifications. Nowadays bio-degradable polymers are useful which are produced by corn starch. Starch based plastics and composites are not cheap but produce less waste which ultimately reduces the plastic pollution. Different types of natural and synthetic polymers and nano clay can be blended with starch. Some of these polymers are tailor made for some special purposes. Natural polymers like chitosan, cellulose, gelatin, collagen, zein, alginate, Kappaphycus alvarezii seaweed, various amino acids, and synthetic polymers like polybutylene, polyacrylic acid, polyethylene, polyvinyl chloride, polyvinyl alcohol, polycaprolactone, and acrylic acid are utilized to modify starch to yield starch base completely bio-decomposable polymers. These biopolymers have the capability to substitute the petroleum based polymers, and can be used for different environmental, industrial and medical applications.


Assuntos
Produtos Biológicos/química , Modelos Químicos , Nanopartículas/química , Amido/química , Metais/química , Minerais/química
12.
BMC Res Notes ; 10(1): 73, 2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28129787

RESUMO

BACKGROUND: The seroprevalence and risk factors of bovine brucellosis were studied at animal and herd level using a combination of culture, serological and molecular methods. The study was conducted in 253 randomly selected cattle herds of the Potohar plateau, Pakistan from which a total of 2709 serum (1462 cattle and 1247 buffaloes) and 2330 milk (1168 cattle and 1162 buffaloes) samples were collected. Data on risk factors associated with seroprevalence of brucellosis were collected through interviews using questionnaires. Univariable and multivariable random effects logistic regression models were used for identifying important risk factors at animal and herd levels. RESULTS: One hundred and seventy (6.3%) samples and 47 (18.6%) herds were seropositive for brucellosis by Rose Bengal Plate test. Variations in seroprevalence were observed across the different sampling sites. At animal level, sex, species and stock replacement were found to be potential risk factors for brucellosis. At herd level, herd size (≥9 animals) and insemination method used were important risk factors. The presence of Brucella DNA was confirmed with a real-time polymerase chain reaction assay (qRT-PCR) in 52.4% out of 170 serological positive samples. In total, 156 (6.7%) milk samples were positive by milk ring test. B. abortus biovar 1 was cultured from 5 positive milk samples. CONCLUSION: This study shows that the seroprevalence of bovine brucellosis is high in some regions in Pakistan. Prevalence was associated with herd size, abortion history, insemination methods used, age, sex and stock replacement methods. The infected animal may act as source of infection for other animals and for humans. The development of control strategies for bovine brucellosis through implementation of continuous surveillance and education programs in Pakistan is warranted.


Assuntos
Brucelose Bovina/sangue , Animais , Brucelose Bovina/epidemiologia , Búfalos , Bovinos , Paquistão , Fatores de Risco , Estudos Soroepidemiológicos
13.
Open Microbiol J ; 9: 26-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26668658

RESUMO

The development of resistance in bacteria against commonly used antibiotics/drugs is of considerable medical significance. Aim of this study was to determine the microbial load of un-pasteurized packed fruit juices sold in Lahore city and to determine antibacterial activity of five different honey samples against isolated bacteria. Unpasteurized fruit juice samples (n=60) were collected from street vendors. All the samples were subjected to Total viable count (TVC), Staphylococcal count (SC) and Coliform count (CC). One hundred and ten strains of bacteria were isolated from various fruit juices and identified on the basis of cultural characters, morphology and biochemical characters. Mean TVCs, SCs and CCs of juices (6.80±1.91, 5.45±1.06 and 3.25±1.25 log10 CFU/ml respectively) were non-significant with standard permissible limits (p<0.05). Among all the fruit juices, 66.66% of samples had TVC more than 4 log10 CFU/ml, 51.66% of samples had SC more than 3 log10 CFU/ml and 46.66% of samples had CC more than 2 log10 CFU/ml. Among the bacillus isolates purified, were Bacillus alvei, Bacillus subtilis, Bacillus polymyxa, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Enterobecter. All five different types of honey samples used in this study showed antibacterial activity against B. alvei, B. polymyxa, B. subtilis and S. aureus and no activity against P. aeruginosa, K. pneumonia, Enterobecter and E. coli. It is concluded that microbial load in unpasteurized fruit juices is significantly higher than standard permissible limits which insinuates its possible role in spoilage and food borne illnesses. Periodic monitoring of packed fruit juices should be carried out to make them safe for consumption. Honey can be used as an alternative for treatment of various infections, especially those caused by antibiotic resistant bacteria.

14.
Langmuir ; 29(38): 12003-12, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23971901

RESUMO

A method to form ordered mesoporous silica based on the use of folate supramolecular templates has been developed. Evidence based on in situ small-angle X-ray scattering (SAXS), electron microscopy, infrared spectroscopy, and in situ conductivity measurements are used to investigate the organic-inorganic interactions and synthesis mechanism. The behavior of folate molecules in solution differs distinctively from that of surfactants commonly used for the preparation of ordered mesoporous silica phases, notably with the absence of a critical micellar concentration. In situ SAXS studies reveal fluctuations in X-ray scattering intensities consistent with the condensation of the silica precursor surrounding the folate template and the growth of the silica mesostructure in the initial stages. High-angle X-ray diffraction shows that the folate template is well-ordered within the pores even after a few minutes of synthesis. Direct structural data for the self-assembly of folates into chiral tetramers within the pores of mesoporous silica provide evidence for the in register stacking of folate tetramers, resulting in a chiral surface of rotated tetramers, with a rotation angle of 30°. Additionally, the self-assembled folates within pores were capable of adsorbing a considerable amount of CO2 gas through the cavity space of the tetramers. The study demonstrates the validity of using a naturally occurring template to produce relevant and functional mesoporous materials.


Assuntos
Ácido Fólico/química , Dióxido de Silício/química , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...