Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Sci Rep ; 14(1): 17893, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095369

RESUMO

Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 µg/per ml and 42.94 µg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.


Assuntos
Hipoglicemiantes , Nanopartículas , Vildagliptina , Óxido de Zinco , Vildagliptina/química , Vildagliptina/farmacologia , Óxido de Zinco/química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Nanopartículas/química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Difração de Raios X , Portadores de Fármacos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nitrilas/química , Humanos
2.
Mol Biotechnol ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177861

RESUMO

The coronavirus known as SARS-CoV-2 has enveloped virions with single-stranded positive-sense RNA genome. It infects mammals, including humans, via the respiratory tract. The non-structural protein of coronavirus, main protease (3CLp) is a key enzyme in the disease's progression. This study aimed to screen phytochemicals derived from Calotropis Procera as potential drugs against 3CLp. Through database search, 50 phytochemicals were identified in the Calotropis sp. To evaluate the possible drug-like properties of these phytochemicals, the studies like, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) analysis, molecular docking and density functional theory (DFT) were performed. Furthermore, GC-MS was performed using water and ethanolic extracts from the plant leaves. The ADMET analysis and docking results showed 11 phytochemicals as probable drug candidates against 3CLp of SARS-CoV-2. All these phytochemicals showed ≥ - 4.3 kcal/mol binding affinity, similar to previously reported inhibitors. Furthermore, based on band energy gap, EHOMO, ELUMO, and DFT analyses, it was shown that these phytochemicals had a significant level of reactivity necessary for the interaction. Among all, the phytochemicals uscharin, voruscharin, frugoside, coroglaucigenin, and benzoylisolineolone may be considered the top 5 drug-like candidates against 3CLp. Furthermore, the selected phytochemicals may be employed for in vitro and in vivo studies for the advancement of a probable drug alongside SARS-CoV-2.

3.
Nanoscale ; 16(31): 14589-14620, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39011743

RESUMO

One possible result of low-level characteristics in the traditional von Neumann formulation system is brain-inspired photonics technology based on human brain idea. Optoelectronic neural devices, which are accustomed to imitating the sensory role of biological synapses by adjusting connection measures, can be used to fabricate highly reliable neurologically calculating devices. In this case, nanosized materials and device designs are attracting attention since they provide numerous potential benefits in terms of limited cool contact, rapid transfer fluidity, and the capture of photocarriers. In addition, the combination of classic nanosized photodetectors with recently generated digital synapses offers promising results in a variety of practical applications, such as data processing and computation. Herein, we present the progress in constructing improved optoelectronic synaptic devices that rely on nanomaterials, for example, 0-dimensional (quantum dots), 1-dimensional, and 2-dimensional composites, besides the continuously developing mixed heterostructures. Furthermore, the challenges and potential prospects linked with this field of study are discussed in this paper.

4.
Cureus ; 16(6): e63289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39070360

RESUMO

OBJECTIVE: The objective is to measure the change in overactive bladder (OAB) symptoms in patients undergoing flexible cystoscopy in the early postoperative period using a validated OAB-V8 tool. PATIENTS AND METHODS: It was a prospective, cross-sectional, observational study conducted by a section of Urology at the Aga Khan University Hospital, Karachi. The total duration of the study was 12 months (July 2022 to June 2023). All adult patients who underwent flexible cystoscopy under local anesthesia for diagnostic and surveillance purposes were included in the study. OAB symptoms were evaluated using the validated eight-item OAB-V8 tool just before the cystoscopy and on postoperative days 1 and 4. Patients were categorized as either OAB-negative (<8) or OAB-positive (≥8) based on their sum scores. Mean sum scores of different variables and OAB subdomains were assessed. RESULTS: Sixty-three patients were included in the final analysis with a predominantly male population. The mean pre-cystoscopy (screen) score was 7.46 + 5.58, which increased to 9.89 + 6.82 on day 1 (p<0.01) before decreasing back to 7.68 + 5.7 on day 4 (p=0.08). Twenty-one patients (33.3%) were labeled OAB positive on day 0. Following cystoscopy, this number increased to 32 patients (50.8%) as 11 patients (26.2 %) developed de-novo OAB symptoms. The sub-group analysis showed an insignificant impact of age (p=0.5), gender (p=0.51), indication (p=0.22), and use of alpha-blocker (p= 0.30) on change in OAB score. CONCLUSION:  OAB symptoms are frequently encountered in patients undergoing awake (flexible) cystoscopy. This procedure can also trigger de novo OAB symptoms, albeit transiently, which typically resolve over time. This information could help in patient counseling, management, and the need for intervention in the future.

5.
Sci Total Environ ; 949: 174954, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067597

RESUMO

Fungal necromass carbon (FNC) contributes significantly to the build-up of soil organic carbon (SOC) by supplying abundant recalcitrant polymeric melanin present in the fungal cell wall. However, the influence of a wide range of conservation practices and associated factors on FNC accumulation and contribution to SOC in global croplands remains unexplored. Here, a meta-analysis was performed using 873 observations across three continents, together with structural equation modeling, to evaluate conservation practices and factors responsible for the enhancement of FNC and SOC. FNC content (8.39 g kg-1) of North American soils was highest compared to FNC content of Asian and European soils. The structural equation models showed a significant (p < 0.05) positive influence of microbial biomass carbon (MBC), soil pH, and clay contents on the accumulation of FNC. Soil C/N ratio and climate factors, however, had only minor influences on FNC accumulation. Notably, the main driver of FNC was MBC, which is mainly influenced by the soil total N and geographic factors in the study areas. Typical 5 cropland practices had significant effect size (p < 0.05) on FNC, leading to an increase of 12 % to 26 %, and the FNC content was greatest under straw amendment (26 %). Fungal necromass accumulation efficiency ranged from 23 % to 45 % depending on cropland practices: non- and reduced tillage was the most efficient (45 %), followed by crop coverage (32 %), straw amendment (30 %), and manure application (27 %), while N fertilization had the lowest efficiency (23 %). We conclude that FNC contributes to over a quarter of SOC, highlighting its major role in enhancing C sequestration worldwide. Conservation practices, particularly non-tillage or reduced tillage, are important to enhance C sequestration from FNC in croplands.


Assuntos
Agricultura , Sequestro de Carbono , Fungos , Solo , Solo/química , Conservação dos Recursos Naturais , Carbono/análise , Microbiologia do Solo , Produtos Agrícolas
6.
PLoS One ; 19(7): e0306031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959268

RESUMO

Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed. Significant variations (p ≤ 0.05) in mineral contents were observed across reaction groups (inoculated and un-inoculated), types (resistant and susceptible), and varieties of citrus in response to infection of Alternaria citri. The analysis of variance showed significant changes in mineral levels of citrus leaves, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), sodium (Na), iron (Fe), and copper (Cu). The results indicate that the concentration of N and P differed by 6.63% and 1.44%, respectively, in resistant plants, while susceptible plants showed a difference of 6.07% and 1.19%. Moreover, resistant plants showed a higher concentrations of K, Ca, Mg, Zn, Na, Fe, and Cu at 8.40, 2.1, 1.83, 2.21, 1.58, 2.89, and 0.36 ppm respectively, compared to susceptible plants which showed concentrations of 5.99, 1.93, 1.47, 1.09, 1.24, 1.81, and 0.31 ppm respectively. Amounts of mineral contents were reduced in both resistant as well as susceptible plants of citrus after inoculation. Amount of N (8.56), P (1.87) % while K (10.74), Ca (2.71), Mg (2.62), Zn (2.20), Na (2.08), Fe (3.57) and Cu (0.20) ppm were recorded in un-inoculated group of citrus plants that reduced to 3.15 and 0.76% and 3.66, 1.40, 0.63,0.42, 0.74, 1.13 and 0.13 ppm in inoculated group respectively. It was accomplished that susceptible varieties contained lower ionic contents than resistant varieties. The higher concentrations of ionic contents in resistant citrus varieties build up the biochemical and physiological processes of the citrus plant, which help to restrict spread of pathogens. Further research could explore the interplay between mineral nutrition and disease resistance in citrus, potentially leading to the development of new disease-resistant varieties.


Assuntos
Alternaria , Citrus , Minerais , Doenças das Plantas , Folhas de Planta , Citrus/microbiologia , Citrus/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Minerais/análise , Minerais/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/química , Genótipo , Resistência à Doença/genética , Fósforo/análise
7.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999593

RESUMO

Bassia indica (Wight) A.J. Scott is an Indian origin plant with documented medicinal and nutritional value, but has not been fully characterized yet. The present study was designed to establish pharmacognostic standards for the proper identification of the B. indica plant and its chemical characterization. The plant was standardized with World Health Organization (WHO) standardization tools and chemically characterized by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. Antibacterial potential was assessed by the zone of inhibition and minimum inhibitory concentration (MIC), and molecular docking studies were also performed. Pharmacognostic evaluation established the macroscopic and microscopic parameters for the identification of whole plant and its powder. Physicochemical parameters were also set forth while quantitative phytochemical analysis showed that the ethyl acetate fraction had the highest quantity of phenols, flavonoids, and tannins. FTIR analysis showed several functional groups such as phenols, alkanes, and alcohols while 55 phytochemicals were identified in the GC-MS analysis of the crude fraction. The crude extract and other fractions showed marked antibacterial activity, while the ethyl acetate fraction showed the least MIC (1.95-31.25 mg/mL). Phytochemicals identified in the GC-MS showed good molecular docking interactions against the DNA gyrase subunit B of bacteria with binding energies ranging from -4.2 to -9.4 kcal/mol. The current study describes the pharmacognostic characterization and phytochemical profiling of B. indica and provides scientific evidence to support its use in infections.

8.
Chem Asian J ; 19(16): e202400308, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38880773

RESUMO

Hydrogen-driven energy is fascinating among the everlasting energy sources, particularly for stationary and onboard transportation applications. Efficient hydrogen storage presents a key challenge to accomplishing the sustainability goals of hydrogen economy. In this regard, solid-state hydrogen storage in nanomaterials, either physically or chemically adsorbed, has been considered a safe path to establishing sustainability goals. Though metal hydrides have been extensively explored, they fail to comply with the set targets for practical utilization. Recently, MXenes, both in bare form and hybrid state with metal hydrides, have proven their flair in ascertaining the hydrides' theoretical and experimental hydrogen storage capabilities far beyond the fancy materials and current state-of-the-art technologies. This review encompasses the significant accomplishments achieved by MXenes (primarily in 2019-2024) for enhancing the hydrogen storage performance of various metal hydride materials such as MgH2, AlH3, Mg(BH4)2, LiBH4, alanates, and composite hydrides. It also discusses the bottlenecks of metal hydrides for hydrogen storage, the potential use of MXenes hybrids, and their challenges, such as reversibility, H2 losses, slow kinetics, and thermodynamic barriers. Finally, it concludes with a detailed roadmap and recommendations for mechanistic-driven future studies propelling toward a breakthrough in solid material-driven hydrogen storage using cost-effective, efficient, and long-lasting solutions.

9.
Int J Biol Macromol ; 273(Pt 1): 132964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852719

RESUMO

There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.


Assuntos
Emulsões , Microesferas , Gomas Vegetais , Reologia , Proteínas de Soja , Água , Emulsões/química , Proteínas de Soja/química , Água/química , Gomas Vegetais/química , Viscosidade , Óleo de Soja/química , Lipólise
10.
Luminescence ; 39(6): e4799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858760

RESUMO

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Telúrio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Telúrio/química , Telúrio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Processos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Manganês/química , Manganês/farmacologia , Estanho/química , Estanho/farmacologia , Tamanho da Partícula , Óxidos/química , Óxidos/farmacologia
12.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701232

RESUMO

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Assuntos
Carbono , Clima , Microplásticos , Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Carbono/análise , Poluentes do Solo/análise
13.
Cureus ; 16(4): e57496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707027

RESUMO

We present a case admitted for evaluation of suspected idiopathic intracranial hypertension (IIH) with an unusual but important departure from the expected algorithm. A 31-year-old lady came with a two-week duration of a mild headache and one-week duration of double vision with no previously documented fever or any comorbidities. Clinically, she had papilledema and bilateral abducens palsy with no signs of meningeal irritation. MRI brain radiology was consistent with IIH. Her CSF study showed pleocytosis with elevated protein levels and normal glucose. Serology was positive for Brucella melitensis at low titers but CSF culture grew Brucella melitensis, confirming the diagnosis of neurobrucellosis. Her headache and abducens palsy improved over the first two weeks, and the papilledema resolved over two months with antibiotics. This clinical mimic is important for physicians (including neurophysicians) and Infectious Disease specialists. The radiological mimic comes from chinked (small) ventricles, unlike most meningeal diseases which can present with papilledema and abducens palsy including tuberculosis, cryptococcosis, and leptomeningeal carcinomatosis. A CSF study is mandatory in the workup of IIH despite massive improvements in imaging.

14.
Luminescence ; 39(5): e4758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712530

RESUMO

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Assuntos
Compostos Férricos , Azul de Metileno , Compostos de Nitrogênio , Energia Solar , Poluentes Químicos da Água , Zinco , Catálise , Poluentes Químicos da Água/química , Compostos Férricos/química , Azul de Metileno/química , Zinco/química , Magnésio/química , Fotólise , Processos Fotoquímicos , Corantes/química , Nanocompostos/química , Grafite/química , Águas Residuárias/química , Nitrilas/química
15.
Microsc Res Tech ; 87(8): 1965-1973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38590279

RESUMO

This study displays the effect of reduced graphene oxide (rGO) nanofiller and polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-grafted maleic anhydride (SEBS-g-MA) on the optical, thermal, and mechanical features of expanded polystyrene (EPS). First, the thin films of pristine EPS and composites were prepared using solution cast method. The prepared films were subjected to fourier-transform infrared (FTIR), SEM, UV-visible spectrophotometer, thermogravimetric analysis/differential scanning calorimetry, and universal testing machine for structural, morphological, optical, thermal, and mechanical characterizations. Optical study revealed a significant increase in refractive index and absorption of composites than EPS. Indirect band-gap energy of EPS (~4.08 eV) was reduced to ~1.61 eV for rGO composite and ~ 2.23 eV for composite composed of rGO and SEBS-g-MA. Thermal analyses presented improvement in characterization temperatures such as T10, T50, Tp, Tm, and Tg of composites, which ultimately lead to the thermal stability of prepared composites than pristine EPS. Stress-strain curves displayed higher yield strength (46.62 MPa), Young's modulus (96.29 MPa), and strain at break (0.54%) for EPS+rGO composite than pure EPS having stress at break (1.01 MPa), Young's modulus (12.44 MPa), and strain at break (0.08%). Moreover, ductility with relatively higher strain at break (0.61%) and lower Young's modulus (79.32 MPa) and yield strength (32.98 MPa) was noticed in EPS+rGO+SEBS-g-MA composite than EPS+rGO composite film. Morphological analysis revealed a change in globular morphology of EPS and inhomogeneous dispersion of rGO in EPS to homogeneously dispersed rGO in EPS matrix without globules owing to the addition of SEBS-g-MA. The increase in compatibility of EPS and rGO due to SEBS-g-MA was also observed in FTIR spectra. RESEARCH HIGHLIGHTS: Here, the solution casting approach was used to create the composite film of EPS and rGO with globules of various sizes. After adding SEBS-g-MA, the shape altered to globular free films exhibiting homogenous dispersion of rGO in EPS matrix. An optical investigation showed that composite materials had a significantly higher refractive index and absorption than EPS. The optical, thermal, and mechanical investigations suggest that the produced composites may be a great substitute for virgin EPS, allowing for a wider range of applications.

16.
J Med Case Rep ; 18(1): 181, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615066

RESUMO

BACKGROUND: Wandering spleen (or ectopic spleen) refers to a hyper-mobile spleen resulting in its displacement from the normal anatomical position to usually in the lower abdominal or pelvic cavity. While ultrasound is often the first radiological modality used, Computed Tomography (CT) shows a clear picture and aides to reach a diagnosis. In circumstances where appropriate imaging modalities are not available, or the operator is inexperienced, diagnosis of wandering spleen can be missed. CASE PRESENTATION: A 22-nulligravida unmarried Sindhi female had presented to the Emergency Room (ER) with a 5-day history of intermittent severe lower abdominal pain. An ultrasound at a local practitioner had suggested an ovarian cyst. Ultrasound-pelvis and later CT scan at our facility reported an enlarged wandering spleen with torsion of its pedicle and infarction. Exploratory laparotomy with splenectomy was done. An enlarged wandering spleen was found with torsion of the splenic vein and thrombosed arterial supply from omentum wrapped over the mass. The patient developed thrombocytosis post-surgery but otherwise did well and was discharged after 2 days. CONCLUSION: Splenic torsion secondary to a wandering spleen can be challenging to diagnose, especially in resource limited settings where ultrasound might be the only modality available. Timely diagnosis and proper intervention are key to saving the life and the spleen.


Assuntos
Cistos Ovarianos , Esplenopatias , Baço Flutuante , Feminino , Humanos , Baço Flutuante/diagnóstico , Baço Flutuante/diagnóstico por imagem , Esplenopatias/diagnóstico por imagem , Esplenopatias/cirurgia , Esplenomegalia , Cistos Ovarianos/diagnóstico por imagem , Cistos Ovarianos/cirurgia
17.
Environ Res ; 252(Pt 2): 118945, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631466

RESUMO

Microplastics pollution and climate change are primarily investigated in isolation, despite their joint threat to the environment. Greenhouse gases (GHGs) are emitted during: the production of plastic and rubber, the use and degradation of plastic, and after contamination of environment. This is the first meta-analysis to assess underlying causal relationships and the influence of likely mediators. We included 60 peer-reviewed empirical studies; estimating GHGs emissions effect size and global warming potential (GWP), according to key microplastics properties and soil conditions. We investigated interrelationships with microbe functional gene expression. Overall, microplastics contamination was associated with increased GHGs emissions, with the strongest effect (60%) on CH4 emissions. Polylactic-acid caused 32% higher CO2 emissions, but only 1% of total GWP. Phenol-formaldehyde had the greatest (175%) GWP via 182% increased N2O emissions. Only polystyrene resulted in reduced GWP by 50%, due to N2O mitigation. Polyethylene caused the maximum (60%) CH4 emissions. Shapes of microplastics differed in GWP: fiber had the greatest GWP (66%) whereas beads reduced GWP by 53%. Films substantially increased emissions of all GHGs: 14% CO2, 10% N2O and 60% CH4. Larger-sized microplastics had higher GWP (125%) due to their 9% CO2 and 63% N2O emissions. GWP rose sharply if soil microplastics content exceeded 0.5%. Higher CO2 emissions, ranging from 4% to 20%, arose from soil which was either fine, saturated or had high-carbon content. Higher N2O emissions, ranging from 10% to 95%, arose from soils that had either medium texture, saturated water content or low-carbon content. Both CO2 and N2O emissions were 43%-56% higher from soils with neutral pH. We conclude that microplastics contamination can cause raised GHGs emissions, posing a risk of exacerbating climate-change. We show clear links between GHGs emissions, microplastics properties, soil characteristics and soil microbe functional gene expression. Further research is needed regarding underlying mechanisms and processes.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Microplásticos , Poluentes do Solo , Microplásticos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análise , Mudança Climática , Solo/química , Poluentes Atmosféricos/análise
18.
RSC Adv ; 14(17): 11797-11810, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38617576

RESUMO

Neuromorphic computing is a new field of information technology, which is inspired by the biomimetic properties of the memristor as an electronic synapse and neuron. If there are electronic receptors that can transmit exterior impulses to the internal nervous system, then the use of memristors can be expanded to artificial nerves. In this study, a layer type memristor is used to build an artificial nociceptor in a very feasible and straightforward manner. An artificial nociceptor is demonstrated here through the fabrication and characterization of a cobalt-doped zinc oxide (CZO)/Au based memristor. In order to increase threshold switching performance, the surface effects of the CZO layer are eliminated by adding cobalt cobalt-doped zinc oxide (CZO) layer between the P++-Si and Au electrodes. Allodynia, hyperalgesia, threshold, and relaxation are the four distinct nociceptive behaviours that the device displays based on the strength, rate of relapse, and duration of the external stimuli. The electrons that are trapped in or released from the CZO layer's traps are responsible for these nociceptive behaviours. A multipurpose nociceptor performance is produced by this type of CZO-based device, which is crucial for artificial intelligence system applications such as neural integrated devices with nanometer-sized characteristics.

19.
Insects ; 15(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667415

RESUMO

Pollen is a major source of proteins and lipids for bumblebees. The nutritional content of pollen may differ from source plants, ultimately affecting colony development. This study investigated the foraging preferences of Bombus terrestris in regard to four pollen species, i.e., oilseed rape, wild apricot, sunflower, and buckwheat, under laboratory conditions. The results show that B. terrestris diversified their preference for pollens; the bumblebees mostly preferred wild apricot pollen, whereas sunflower pollen was the least preferred. The colonies fed on a mixed four-pollen diet, with a protein-lipid ratio of 4.55-4.86, exhibited better development in terms of the number of offspring, individual body size and colony weight. The colonies fed with buckwheat and sunflower pollens produced a significantly lower number of workers and failed to produce queen and male offspring. Moreover, wild apricot pollen had the richest protein content (23.9 g/100 g) of the four pollen species, whereas oilseed rape pollen had the highest lipid content (6.7 g/100 g), as revealed by the P:L ratios of wild apricot, sunflower, buckwheat, and oilseed rape, which were 6.76, 5.52, 3.50, and 3.37, respectively. Generally, B. terrestris showed feeding preferences regarding different pollens and a mixture of pollens, which ultimately resulted in differences in colony development. The findings of this study provide important baseline information to researchers and developers of nutritive pollen diets for bumblebees.

20.
Environ Geochem Health ; 46(5): 175, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619636

RESUMO

Alpine lakes are aquatic ecosystems that maintain and regulate water supply for the downstream streams, rivers, and other reservoirs. This study examined the water characteristics of various alpine lakes in Gilgit-Baltistan, Northern Pakistan. For this purpose, water was sampled and investigated for basic parameters, anions, and cations using the multi-parameter analyzers and atomic absorption spectrophotometer. Physicochemical parameters of alpine lakes were noted under the World Health Organization water guidelines, except for fluoride (F-) and turbidity in 4.3% and 36% of samples, respectively. Water quality index (WQI) classified samples (93%) as excellent and good quality (7%). Results showed maximum chronic daily intake values (0.14 ± 0.01 mg/kg-day) for nitrate (NO3-) and hazard quotient (0.80 ± 0.24) for F- in children via water intake from Upper Kachura and Shausar Lakes, respectively. Statistical analyses of Piper and Gibbs's plots revealed that the water quality is mainly characterized by bedrock geology.


Assuntos
Ecossistema , Qualidade da Água , Criança , Humanos , Lagos , Abastecimento de Água , Fluoretos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA