Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15219, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956117

RESUMO

Blinding eye diseases are often related to changes in retinal structure, which can be detected by analysing retinal blood vessels in fundus images. However, existing techniques struggle to accurately segment these delicate vessels. Although deep learning has shown promise in medical image segmentation, its reliance on specific operations can limit its ability to capture crucial details such as the edges of the vessel. This paper introduces LMBiS-Net, a lightweight convolutional neural network designed for the segmentation of retinal vessels. LMBiS-Net achieves exceptional performance with a remarkably low number of learnable parameters (only 0.172 million). The network used multipath feature extraction blocks and incorporates bidirectional skip connections for the information flow between the encoder and decoder. In addition, we have optimised the efficiency of the model by carefully selecting the number of filters to avoid filter overlap. This optimisation significantly reduces training time and improves computational efficiency. To assess LMBiS-Net's robustness and ability to generalise to unseen data, we conducted comprehensive evaluations on four publicly available datasets: DRIVE, STARE, CHASE_DB1, and HRF The proposed LMBiS-Net achieves significant performance metrics in various datasets. It obtains sensitivity values of 83.60%, 84.37%, 86.05%, and 83.48%, specificity values of 98.83%, 98.77%, 98.96%, and 98.77%, accuracy (acc) scores of 97.08%, 97.69%, 97.75%, and 96.90%, and AUC values of 98.80%, 98.82%, 98.71%, and 88.77% on the DRIVE, STARE, CHEASE_DB, and HRF datasets, respectively. In addition, it records F1 scores of 83.43%, 84.44%, 83.54%, and 78.73% on the same datasets. Our evaluations demonstrate that LMBiS-Net achieves high segmentation accuracy (acc) while exhibiting both robustness and generalisability across various retinal image datasets. This combination of qualities makes LMBiS-Net a promising tool for various clinical applications.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Vasos Retinianos , Vasos Retinianos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37938951

RESUMO

In this study, we propose LDMRes-Net, a lightweight dual-multiscale residual block-based convolutional neural network tailored for medical image segmentation on IoT and edge platforms. Conventional U-Net-based models face challenges in meeting the speed and efficiency demands of real-time clinical applications, such as disease monitoring, radiation therapy, and image-guided surgery. In this study, we present the Lightweight Dual Multiscale Residual Block-based Convolutional Neural Network (LDMRes-Net), which is specifically designed to overcome these difficulties. LDMRes-Net overcomes these limitations with its remarkably low number of learnable parameters (0.072M), making it highly suitable for resource-constrained devices. The model's key innovation lies in its dual multiscale residual block architecture, which enables the extraction of refined features on multiple scales, enhancing overall segmentation performance. To further optimize efficiency, the number of filters is carefully selected to prevent overlap, reduce training time, and improve computational efficiency. The study includes comprehensive evaluations, focusing on the segmentation of the retinal image of vessels and hard exudates crucial for the diagnosis and treatment of ophthalmology. The results demonstrate the robustness, generalizability, and high segmentation accuracy of LDMRes-Net, positioning it as an efficient tool for accurate and rapid medical image segmentation in diverse clinical applications, particularly on IoT and edge platforms. Such advances hold significant promise for improving healthcare outcomes and enabling real-time medical image analysis in resource-limited settings.

3.
Comput Biol Med ; 151(Pt A): 106277, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370579

RESUMO

Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.


Assuntos
Retinopatia Diabética , Degeneração Macular , Doenças Retinianas , Humanos , Fundo de Olho , Retina/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA