Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evid Based Integr Med ; 28: 2515690X231211661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37960857

RESUMO

Amaranthus dubius is a vegetable consumed for its nutritional content in Kenya. In herbal medicine, A. dubius is utilized to relief fever, anemia and hemorrhage. Additionally, it is utilized to manage cognitive dysfunction and is considered to augment brain function, but there is no empirical evidence to support this claim. The contemporary study investigated cognitive enhancing potential of A. dubius in mice model of Alzheimer's disease (AD)-like dementia induced with ketamine. Cognitively damaged mice were treated with aqueous extract of A. dubius leaf upon which passive avoidance task (PAT) was used to assess the cognitive performance. At the end of passive avoidance test, brains of the mice were dissected to evaluate the possibility of the extract to inhibit hallmarks that propagate AD namely oxidative stress and acetylcholinesterase activity. Additionally, characterization of secondary metabolites was done using liquid chromatograph- mass spectrometry analysis. During PAT test, extract-treated mice showed significantly increased step-through latencies than AD mice, depicting ability of A. dubius to reverse ketamine-induced cognitive decline. Further, the extract remarkably lowered malondialdehyde levels to normal levels and effectively inhibited acetylcholinesterase enzyme. The study showed that A. dubius extract is endowed with phytoconstituents that possess anti-oxidant and anticholinesterase activities. Thus, this study confirmed promising therapeutic effects of 200, 300 and 400 mg/kg bw of A. dubius extract with potential to alleviate cognitive disarray observed in AD.


Assuntos
Doença de Alzheimer , Ketamina , Camundongos , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Ketamina/efeitos adversos , Cognição , Extratos Vegetais/uso terapêutico
3.
Heliyon ; 8(12): e12349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619417

RESUMO

Despite availability of instruments for measuring attitudes towards mask use, the psychometric properties of many available instruments are not adequately established which limits their research usefulness across contexts. In three studies, we developed the Attitudes Towards Face Mask Use Scale (ATFMUS) in three phases: item generation, scale development, and scale evaluation. Phase one and two were addressed in study 1 while phase three was addressed in studies 2 and 3. In Study 1, a combined online and pen-and-paper sample of 174 (78% university students) completed a questionnaire with 19 items regarding attitudes towards face mask use derived from theory, previous research, and experience. Responses were subjected to item reduction analysis, exploratory factor analysis and reliability analysis. In Study 2, a student sample of 674 (70.5% high school) completed the new scale together with measures of COVID-19 related anxiety and obsession, personality, affect, social media use, and social desirability. Data from the ATFMUS were analyzed using confirmatory factor analysis and pertinent revisions done. The ATFMUS was then validated using correlation analyses, measurement invariance analyses, and known-group comparisons. In study 3, two samples of university students from Ghana (n = 242) and Kenya (n = 199) were involved in testing the cross-country invariance of the ATFMUS. The results reveal that the 5-item ATFMUS is a reliable and valid scale for assessing attitudes towards face mask use. Invariance analysis revealed that the ATFMUS is fair to use across participants of different age, level of education, and countries. The scale is also sensitive to participants' actual use of face masks as well as their beliefs about COVID-19 and efficacy of the facemasks. This study offers a foundation for further psychometric evaluation of the ATFMUS.

4.
Heliyon ; 7(5): e07145, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34136700

RESUMO

Oxidative stress causes and drives many agonising inflammatory conditions, which cause disability, financial burden, and emotional stress. The current anti-inflammatory, analgesic, and antioxidant agents are associated with adverse effects, inaccessibility, high costs, and low efficacies, thereby warranting the need for alternatives, especially from natural sources. Lonchocarpus eriocalyx plant is traditionally used in Kenyan communities to treat various inflammatory and oxidative stress-associated diseases; however, its pharmacologic efficacy and safety have not been empirically validated, hence this study. The in vivo antiinflamatory and antinociceptive efficacy of the aqueous and methanolic stem bark extracts of L. eriocalyx were determined using the xylene-induced ear oedema, and the acetic acid-induced writhing techniques, respectively, in experimental mice. Also, in vitro antioxidant activities of the studied plant extracts were investigated using the Thiobarbituric acid test for lipid peroxidation, 1, 1-diphenyl -2-picrylhydrazyl (DPPH), and Ferric reducing antioxidant power standard assay methods. Moreover, the studied extracts' acute oral toxicity effects were investigated according to the Organisation for Economic Corporation and Development (OECD) guidelines. The studied plant extracts showed significant dose-dependent inhibitions of oedema and writhing, depicting their anti-inflammatory and antinociceptive efficacy. Besides, the extracts revealed significant inhibitions of in vitro lipid peroxidation in varying degrees. Notably, the extracts demonstrated very strong DPPH radical scavenging and ferric-reducing antioxidant efficacies. Furthermore, the two studied plant extracts did not elicit acute oral toxicity, with LD50 values of >2000 mg/kg BW, hence were considered safe. The anti-inflammatory, antinociceptive, and in vitro antioxidant efficacies of these extracts were attributed to antioxidant phytocompounds with diverse pharmacologic effects, especially through the amelioration of oxidative stress. Further studies on the anti-inflammatory, antinociceptive and antioxidant mechanism(s) and isolation and characterisation of responsible compounds are encouraged to spur the development of affordable, accessible, safe, and efficacious drugs.

5.
Biochem Res Int ; 2020: 8819045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354371

RESUMO

Over 50 million persons are living with cognitive deficits worldwide, with over 80% of these individuals living in the developing world. The number of affected persons is projected to go over 152 million by the year 2050. Current drugs used for cognitive impairment are debatably ineffective, costly, inaccessible, and associated with undesirable events that call for the search for alternative and complementary approaches. Plants are arguably affordable, accessible, and efficacious. However, despite the reported healing claims, scientific data validating these claims are lacking. L. eriocalyx is traditionally used for the management of various conditions, including cognitive impairment but has not been scientifically explored. In this study, the Morris Water Maze (MWM) method was used to evaluate in vivo cognitive-enhancing effects of studied extracts of L. eriocalyx. Furthermore, following MWM experiments, brains were dissected and processed, and malondialdehyde profiles were determined. Qualitative phytochemical profiles of the studied plant extracts were also determined. The results showed that mice that were treated with the studied plant extracts took significantly shorter transfer latencies, navigation distances, and significantly longer latencies in the target quadrant (NW) (p < 0.05) compared with the negative control mice, indicating cognitive-enhancing activities. Furthermore, cognitively impaired mice that received the studied plant extracts had significantly lower MDA profiles compared with the MDA profile of the negative control group mice (p < 0.05). The cognitive-enhancing and MDA profile lowering effects were attributed to the presence of antioxidant phytoconstituents that ought to have modulated the redox state, thereby attenuating brain damage. These extracts can be, therefore, used for the management of cognitive deficits. Further studies leading to isolation and characterization of active molecules for cognitive impairment are recommended. Furthermore, the precise mechanism(s) through which these extracts exert their pharmacologic activity should be established.

6.
J Evid Based Integr Med ; 25: 2515690X20937988, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32664742

RESUMO

Oxidative stress has been recognized as a key driver of many ailments affecting humankind. Free radicals attack biologically important biomolecules, impairing their functioning, thereby initiating and exacerbating diseases. As a comeback, antioxidant therapies have been proposed as novel approaches to ameliorating oxidative stress-associated diseases including chronic ones. Antioxidants are thought to employ multifaceted and multitargeted mechanisms that either restore oxidative homeostasis or prevent free radical buildup in the body, which overwhelm the endogenous defenses. Plants have been used for many ages across time to manage human diseases, and have a host of antioxidant phytocompounds. Piliostigma thonningii is traditionally used for the management of inflammation, malaria fever, rheumatism, and insanity, among other diseases caused by a disturbed redox state in the body. In this study, in vitro antioxidant activities of the methanolic and aqueous stem bark extracts of P. thonningii were evaluated using the in vitro antilipid peroxidation, the 1,1-diphenyl-2-picryhydrazyl (DPPH) free radical scavenging, and the ferric reducing antioxidant power assay methods. The obtained results revealed remarkable antioxidant activities of the studied plant extracts as evidenced by the low IC50 and EC50 values. These antioxidant activities could be due to the presence of antioxidant phytochemicals like flavonoids, carotenoids, tannins, and phenols, among others. Therefore, the therapeutic potency of this plant could be due to its antioxidant properties. This study recommends in vivo antioxidant efficacy testing of the studied plant extracts, as well as isolation and characterization of bioactive antioxidant compounds that are potent against oxidative stress.


Assuntos
Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Técnicas In Vitro , Quênia , Casca de Planta
7.
Int J Alzheimers Dis ; 2020: 1367075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308992

RESUMO

Cognitive impairment (CI) is among the leading causes of disability in humans. It is estimated that over 35.6 million people are suffering from Alzheimer's disease- (AD-) associated cognitive deficits globally with these statistics projected to rise over 115.4 million by the year 2050. There is no specific etiology for this cognitive impairment; however, various contributing factors including advancing age (>60 years old), oxidative stress, cerebral injuries, infections, neurologic disorders, and cancer have been implicated. Despite various attempts to manage CI, no curative medicines are yet available. The current drugs used to manage symptoms of AD-associated CI including Donepezil and Rivastigmine among others are only palliative rather than therapeutic. Furthermore, these agents have been associated with undesirable side effects. This calls for alternative and complementary approaches aimed at either preventing or reverting AD-related CI in a curative way without causing adverse events. It is estimated that over 80% of the world's population utilize herbal medicines for basic healthcare as it is considered safe, affordable, and easily accessible as opposed to conventional healthcare. Various parts of P. thonningii are used in traditional medicine to manage various conditions including CI. However, empirical and scientific data to validate these uses is lacking. In this study, the Morris water maze (MWM) experiment was adopted to evaluate the cognitive-enhancing effects of the studied plant extracts. The malondialdehyde (MDA) profiles in the brains of experimental mice were determined using the thiobarbituric acid reactive substances (TBARS) test. Moreover, qualitative phytochemical profiling of the studied plant extracts was performed using standard procedures. The results showed remarkable cognitive-enhancing activities which were reflected in significantly shorter transfer latencies, navigation distances, longer time spent in platform quadrant, and lower MDA levels compared with those recorded for the negative control mice (p < 0.05). Phytochemical screening of the studied plant extracts revealed the presence of antioxidant phytocompounds, which may have played key roles in the extracts' potency. Based on the findings herein, P. thonningii extracts, especially the aqueous ones have a promising potential for the management of AD-associated CI. Further studies aimed at isolating and characterizing specific active compounds for CI from P. thonningii are recommended. Additionally, specific mode(s) of action of active principles should be elucidated. Moreover, toxicity studies should be done on the studied plant extracts to ascertain their safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...