Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Arch Microbiol ; 206(7): 325, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913205

RESUMO

The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana Múltipla , Compostos Fitoquímicos , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos
3.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611478

RESUMO

Symbiodiniaceae species is a dinoflagellate that plays a crucial role in maintaining the symbiotic mutualism of reef-building corals in the ocean. Reef-building corals, as hosts, provide the nutrition and habitat to endosymbiotic Symbiodiniaceae species and Symbiodiniaceae species transfer the fixed carbon to the corals for growth. Environmental stress is one of the factors impacting the physiology and metabolism of the corals-dinoflagellate association. The environmental stress triggers the metabolic changes in Symbiodiniaceae species resulting in an increase in the production of survival organelles related to storage components such as lipid droplets (LD). LDs are found as unique organelles, mainly composed of triacylglycerols surrounded by phospholipids embedded with some proteins. To date, it has been reported that investigation of lipid droplets significantly present in animals and plants led to the understanding that lipid droplets play a key role in lipid storage and transport. The major challenge of investigating endosymbiotic Symbiodiniaceae species lies in overcoming the strategies in isolating lesser lipid droplets present in its intercellular cells. Here, we review the most recent highlights of LD research in endosymbiotic Symbiodiniaceae species particularly focusing on LD biogenesis, mechanism, and major lipid droplet proteins. Moreover, to comprehend potential novel ways of energy storage in the symbiotic interaction between endosymbiotic Symbiodiniaceae species and its host, we also emphasize recent emerging environmental factors such as temperature, ocean acidification, and nutrient impacting the accumulation of lipid droplets in endosymbiotic Symbiodiniaceae species.

4.
Environ Res ; 242: 117812, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042517

RESUMO

Developing efficient and effective photocatalysts is essential for organic dyes and antibiotic degradation in wastewater. Ni-doped α-Fe2O3/g-C3N4 (NFGCN) photocatalysts were synthesised through a simple co-precipitation technique and used for the ciprofloxacin (CIP) and methylene blue (MB) degradation through photocatalysis. The XRD data indicated the crystallinity of the synthesised iron oxide and its composites with rhombohedral structures with the nature of high purity. The morphology of the NFGCN composite revealed the construction of Ni-doped α-Fe2O3 (NFO) nanoparticles onto the g-C3N4 (GCN) sheet surface along with the close interface that induced a Z-scheme heterojunction. The synthesised photocatalysts showed photocatalytic activity with good degradation efficiency of 82.1 % and 92.0 % for CIP and MB, respectively, within 120 min under solar light exposure. The improved photocatalytic degradation efficiency was attained owing to the synthesised composite's enhanced light absorption in the visible range. The narrow band gap energies and interaction between Ni-doped α-Fe2O3 and g-C3N4 displayed by these materials result in enhanced visible light absorption, effective charge carrier separation and transportation to the pollutants. CIP degradation pathways were investigated utilising the LC-MS analysis. NFGCN composites showed good recyclability (5 cycles), magnetic retrievability, and stability for degrading organic and emerging pollutants from wastewater through photocatalysis.


Assuntos
Poluentes Ambientais , Compostos Férricos , Grafite , Nanocompostos , Compostos de Nitrogênio , Ciprofloxacina/química , Águas Residuárias , Luz , Nanocompostos/química
5.
ACS Omega ; 8(48): 45942-45951, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075814

RESUMO

This work highlighted the counterion association of diphenhydramine hydrochloride (DPC) and chlorpheniramine maleate (CPM) with anionic sodium tetradecyl sulfate (STS) by conductivity, fluorescence, and UV spectrophotometer measurements. The presence of drugs and the formation of premicellar aggregates of STS were highlighted. The modified Corrin-Harkins CH approaches assessed the STS counterion binding values B = 0.300 for DPC and 0.379 for CPM in the aqueous media at 25 °C. The counterion binding constant (ßc) and Gibb's free energy of micellization (ΔGmic°) were increased and became more negative, suggesting that the drug-surfactant interaction was controlled by electrostatic interaction. Furthermore, the spectral study evaluated that the three isosbestic points for CPM and one isosbestic point for DPC in the STS micelles were observed, which confirmed that CPM was more binding than DPC with the STS micelles. The differential absorbance spectra study was applied to UV spectra to determine the binding constants (Kb) of 2.232 and 2.837 and partition coefficients (Kx) of 286.64 and 3209.21 for DPC and CPM in the presence of STS micelles. The findings demonstrated that the CPM molecules have been associated with the Palisade layer of the STS micelles, and the DPC molecules were bound to the Stern layer of the STS micelles. Finally, we came to the conclusion that ionic drugs could improve the micellization capabilities of surfactants, which might be useful for choosing the best excipients for pharmaceutical applications.

8.
Front Pharmacol ; 14: 1231450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745072

RESUMO

Twelve novel neo-tanshinlactone-chalcone hybrid molecules were constructed through a versatile methodology involving the Horner-Wadsworth-Emmons (HWE) olefination of 4-formyl-2H-benzo [h]chromen-2-ones and phosphonic acid diethyl esters, as the key step, and evaluated for anticancer activity against a series of four breast cancers and their related cell lines, viz. MCF-7 (ER + ve), MDA-MB-231 (ER-ve), HeLa (cervical cancer), and Ishikawa (endometrial cancer). The title compounds showed excellent to moderate in vitro anti-cancer activity in a range of 6.8-19.2 µM (IC50). Compounds 30 (IC50 = 6.8 µM and MCF-7; IC50 = 8.5 µM and MDA-MB-231) and 31 (IC50 = 14.4 µM and MCF-7; IC50 = 15.7 µM and MDA-MB-231) exhibited the best activity with compound 30 showing more potent activity than the standard drug tamoxifen. Compound 30 demonstrated a strong binding affinity with tumor necrosis factor α (TNF-α) in molecular docking studies. This is significant because TNFα is linked to MCF-7 cancer cell lines, and it enhances luminal breast cancer cell proliferation by upregulating aromatase. Additionally, virtual ADMET studies confirmed that hybrid compounds 30 and 31 met Lipinski's rule; displayed high bioavailability, excellent oral absorption, favorable albumin interactions, and strong penetration capabilities; and improved blood-brain barrier crossing. Based on the aforementioned results, compound 30 has been identified as a potential anti-breast cancer lead molecule.

9.
Plant Sci ; 335: 111820, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37549738

RESUMO

Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Frutas/genética , Etilenos , Reguladores de Crescimento de Plantas , Resposta ao Choque Térmico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Int J Biol Macromol ; 248: 125936, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482156

RESUMO

The present study aimed to produce, characterize, and apply pullulanase from Aspergillus flavus (BHU-46) for fruit juice processing, assessing its enzymatic properties and impact on juice quality. Pullulanase was produced via solid-state fermentation using wheat bran as the substrate. Purification and characterization included specific activity, molecular weight, pH and temperature optima, and substrate specificity. The enzyme was immobilized in sodium alginate beads and used for clarifying mosambi, apple, and mango juices. Parameters such as yield, clarity, reducing sugar, total soluble solids (TSS), total phenol, and enzymatic browning were evaluated pre-and post-treatment. The purified pullulanase had a specific activity of 652.2 U/mg and a molecular weight of 135 kDa. Optimal pH values were 6.5 and 10, with maximum activity at 50 °C. Pullulanase showed a high affinity for pullulan and starch, indicating Pullulanase type II classification. Immobilized pullulanase improved yield, clarity, reducing sugar, TSS, and total phenol in fruit juices. The highest yield and clarity were observed in mosambi juice. Additionally, the enzyme reduced enzymatic browning, increasing the lightness of the juice. This study provides a significant contribution to the juice processing industry and represents the first report on the application of pullulanase for fruit juice processing.


Assuntos
Sucos de Frutas e Vegetais , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Fenóis/análise , Açúcares/análise , Frutas/química
11.
Biotechnol Bioeng ; 120(8): 2253-2268, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386894

RESUMO

Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM-polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM-based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type-A CBMs from families 3a and 64 with crystalline cellulose-I and phosphoric acid swollen cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose-I using equilibrium binding assays. To compute the adsorption (nkon ) and desorption (koff ) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide-field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.


Assuntos
Celulose , Protoplastos , Humanos , Protoplastos/metabolismo , Celulose/metabolismo , Polissacarídeos/metabolismo , Plantas/química , Metabolismo dos Carboidratos
12.
Front Plant Sci ; 14: 1152485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123820

RESUMO

Introduction: Increased soil salinity in the recent years has adversely affected the productivity of mango globally. Extending the cultivation of mango in salt affected regions warrants the use of salinity tolerant/resistant rootstocks. However, the lack of sufficient genomic and transcriptomic information impedes comprehensive research at the molecular level. Method: We employed RNA sequencing-based transcriptome analysis to gain insight into molecular response to salt stress by using two polyembryonic mango genotypes with contrasting response to salt stress viz., salt tolerant Turpentine and salt susceptible Mylepelian. Results: RNA sequencing by Novaseq6000 resulted in a total of 2795088, 17535948, 7813704 and 5544894 clean reads in Mylepelian treated (MT), Mylepelian control (MC), Turpentine treated (TT) and Turpentine control (TC) respectively. In total, 7169 unigenes annotated against all the five public databases, including NR, NT, PFAM, KOG, Swissport, KEGG and GO. Further, maximum number of differentially expressed genes were found between MT and MC (2106) followed by MT vs TT (1158) and TT and TC (587). The differentially expressed genes under different treatment levels included transcription factors (bZIP, NAC, bHLH), genes involved in Calcium-dependent protein kinases (CDPKs), ABA biosynthesis, Photosynthesis etc. Expression of few of these genes was experimentally validated through quantitative real-time PCR (qRT-PCR) and contrasting expression pattern of Auxin Response Factor 2 (ARF2), Late Embryogenesis Abundant (LEA) and CDPK genes were observed between Turpentine and Mylepelian. Discussion: The results of this study will be useful in understanding the molecular mechanism underlying salt tolerance in mango which can serve as valuable baseline information to generate new targets in mango breeding for salt tolerance.

13.
Environ Sci Pollut Res Int ; 30(36): 84829-84849, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37138125

RESUMO

Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant's ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs' phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt's many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.


Assuntos
Alcaloides , Elementos da Série dos Lantanídeos , Metais Terras Raras , Animais , Humanos , Ecossistema , Metais Terras Raras/toxicidade , Ítrio , Plantas
14.
Antibiotics (Basel) ; 12(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37107015

RESUMO

Hospital and municipal wastewater contribute to the spread of antibiotic-resistant bacteria and genes in the environment. This study aimed to examine the antibiotic resistance and ß-lactamase production in clinically significant Gram-negative bacteria isolated from hospital and municipal wastewater. The susceptibility of bacteria to antibiotics was tested using the disk diffusion method, and the presence of extended-spectrum ß-lactamases (ESBL) and carbapenemases was determined using an enzyme inhibitor and standard multiplex PCR. Analysis of antimicrobial resistance of total bacterial strains (n = 23) revealed that most of them were resistant to cefotaxime (69.56%), imipenem (43.47%), meropenem (47.82%) and amoxicillin-clavulanate (43.47%), gentamicin (39.13%), cefepime and ciprofloxacin (34.78%), trimethoprim-sulfamethoxazole (30.43%). A total of 8 of 11 phenotypically confirmed isolates were found to have ESBL genes. The blaTEM gene was present in 2 of the isolates, while the blaSHV gene was found in 2 of the isolates. Furthermore, the blaCTX-M gene was found in 3 of the isolates. In one isolate, both the blaTEM and blaSHV genes were identified. Furthermore, of the 9 isolates that have been phenotypically confirmed to have carbapenemase, 3 were confirmed by PCR. Specifically, 2 isolates have the blaOXA-48 type gene and 1 have the blaNDM-1 gene. In conclusion, our investigation shows that there is a significant rate of bacteria that produce ESBL and carbapenemase, which can promote the spread of bacterial resistance. Identifying ESBL and carbapenemase production genes in wastewater samples and their resistance patterns can provide valuable data and guide the development of pathogen management strategies that could potentially help reduce the occurrence of multidrug resistance.

15.
Plants (Basel) ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111895

RESUMO

Worldwide, crop productivity is highly influenced by heavy metal toxicity. Lead (Pb) the is second-most toxic heavy metal that has high persistence in soil. Lead is translocated in plants from rhizosphere soil and enters the food chain, where it poses a significant hazard to the health of humans. In the present investigation, seed priming with triacontanol (Tria) was used to mitigate Pb phytotoxicity in Phaseolus vulgaris L. (common bean). Seeds were primed with different concentrations of Tria (control, 10 µmol L-1, 20 µmol L-1, 30 µmol L-1) solutions. The pot experiment was carried out by sowing Tria-primed seeds in contaminated soil with 400 mg kg-1 Pb. Lead alone induced a decrease in the rate of germination and a significant reduction in biomass and growth of P. vulgaris as compared to the control. All these negative effects were reversed by Tria-primed seeds. Proliferation of photosynthetic pigments was observed 1.8-fold by Tria under Pb stress. Primed seeds with 20 µmol L-1 Tria enhanced stomatal conductance (gs), photosynthetic rate (A), transpiration rate (Ei), and uptake of mineral contents (Mg+2, Zn+2, Na+, and K+) and reduced Pb accumulation in seedlings. Tria caused a 1.3-fold increase in osmotic regulator proline synthesis to alleviate Pb stress. Phenolics, soluble protein, and DPPH free radical scavenging activity were enhanced by Tria application, suggesting that exogenous Tria could be employed to improve plant tolerance to Pb stress.

16.
Curr Opin Plant Biol ; 73: 102348, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36842412

RESUMO

Acylsugars constitute a diverse class of secondary metabolites found in many flowering plant families. Comprising sugar cores and acyl groups connected by ester and/or ether linkages, acylsugar structures vary considerably at all taxonomic levels - from populations of the same species to across species of the same family and across flowering plants, with some species producing hundreds of acylsugars in a single organ. Acylsugars have been most well-studied in the Solanaceae family, but structurally analogous compounds have also been reported in the Convolvulaceae, Martyniaceae, Geraniaceae, Rubiaceae, Rosaceae and Caryophyllaceae families. Focusing on Solanaceae and Convolvulaceae acylsugars, this review highlights their structural diversity, the potential biosynthetic mechanisms that produce this diversity, and its functional significance. Finally, we also discuss the possibility that some of this diversity is merely "noise", arising out of enzyme promiscuity and/or non-adaptive evolutionary mechanisms.


Assuntos
Magnoliopsida , Açúcares , Açúcares/metabolismo , Magnoliopsida/metabolismo , Evolução Biológica
17.
Curr Opin Biotechnol ; 79: 102850, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481342

RESUMO

Tropical fruits and vegetables are predominantly cultivated in warm climate zones, resulting in cultivar diversity in terms of structure, features, and physiology. These constitute a variety of bioactive ingredients such as vitamins, minerals, phenolic acids, anthocyanins, flavonoids, fatty acids, fiber, and their distinctive appearances attract customers across the world. The global production of fruit and vegetables has been attained a tremendous increase for the last few decades. However, huge losses at pre- and postharvest levels are major constraints in their judicious use. Traditional breeding strategies were used to minimize these losses, but their functionality is limited due to their time and labor intensiveness. Recent biotechnological, computational, and multiomics approaches not only address the losses concern but also aid in boosting crop productivity and nutritional values. This article emphasizes molecular tools that have been used to reduce losses of tropical fruits and vegetables at pre- and postharvest levels.


Assuntos
Frutas , Verduras , Verduras/química , Frutas/química , Antocianinas/análise , Carboidratos , Vitamina A/análise
18.
J Evol Biol ; 36(1): 5-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083189

RESUMO

The transition of plants from water to land is considered one of the most significant events in the evolution of life on Earth. The colonization of land by plants, accompanied by their morphological, physiological and developmental changes, resulted in plant biodiversity. Besides significantly influencing oxygen levels in the air and on land, plants manufacture organic matter from CO2 and water with the help of sunlight, paving the way for the diversification of nonplant lineages ranging from microscopic organisms to animals. Land plants regulate the climate by adjusting total biomass and energy flow. At the genetic level, these innovations are achieved through the rearrangement of pre-existing genetic information. Advances in genome sequencing technology are revamping our understanding of plant evolution. This study highlights the morphological and genomic innovations that allow plants to integrate life on Earth.


Assuntos
Evolução Biológica , Embriófitas , Filogenia , Plantas/genética , Embriófitas/genética , Água , Evolução Molecular
19.
Environ Sci Pollut Res Int ; 30(1): 884-898, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35907074

RESUMO

Arsenic (As) traces have been reported worldwide in vegetables and crops cultivated in As-polluted soils. Being carcinogenic, the presence of As in edibles is of great concern as it ultimately reaches humans and animals through the food chain. Besides, As toxicity adversely affects the growth, physiology, metabolism, and productivity of crops. In the present study, Trigonella foenum-graecum (Fenugreek) was exposed to the As stress (0, 50, 100, and 150 µM sodium arsenate) for a week. Further, evaluation of As accumulation in roots and shoots, magnitude and visualization of oxyradicals, and thiol-based defence offered by Fenugreek was assessed. The root and leaf accumulated 258-453 µg g-1 dry wt (DW) and 81.4-102.1 µg g-1 DW of As, respectively. An arsenic-mediated decline in the growth index and increase in oxidative stress was noted. Arsenic stress modulated the content of thiol compounds; especially cysteine content increased from 0.36 to 0.43 µmole g-1 FW protein was noted. Random Amplified Polymorphic DNA (RAPD)-based analysis showed DNA damage in As-treated plants. Health risk assessment parameters showed that As concentration in the consumable plant shoot was below the critical hazard level (hazard quotient < 1). Moreover, T. foenum-graecum showed varied responses to As-induced oxidative stress with applied concentrations (150 µM being more toxic than lower concentrations). In addition, the RAPD profile and level of thiol compounds were proved significant biomarkers to assess the As toxicity in plants. The conclusion of this study will help users of fenugreek to have a clue and create awareness regarding the consumption.


Assuntos
Arsênio , Trigonella , Humanos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Extratos Vegetais/farmacologia , Dano ao DNA , Compostos de Sulfidrila/metabolismo
20.
Trop Life Sci Res ; 33(3): 151-164, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36545057

RESUMO

Fermented bamboo shoots are rich in high protein, carbohydrates, fibre and minerals while low in fat content. In the North-East region of India and other Asian countries, they are mostly used in various food preparations. The present study was undertaken to explore the diversity of bacteria associated with Bamboo shoots and to evaluate their antibacterial profile. Based on the results the fermented bamboo shoots showed viable counts ranging from 6.55 ± 0.91 log CFU/g to 7.86 ± 1.21 log CFU/g. The 16s rRNA sequence analysis showed that these isolates belonged to the genus Bacillus (Bacillus safensis, B. tequilensis, B. siamensis, B. nakamurai, B. subtilis) and Enterobacter. These isolates have not been reported previously from fermented bamboo shoots except B. subtilis. Surprisingly, no Lactobacillus species or molds were found in any of the samples tested. Potent antibacterial activity was recorded against Klebsiella, Staphylococcus aureus, Salmonella and B. cereus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA