Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
JCI Insight ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713531

RESUMO

Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the impact of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNFα fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNFα did not impact ROS production in healthy neutrophils but prevented exogenous TNFα from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNFα was independent of transcription. Moreover, the addition of TNFα immediately rescued ROS production in IBT-treated neutrophils indicating that TNFα worked through a BTK-independent signaling pathway. Finally, TNFα restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNFα rescues the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.

2.
Sci Rep ; 13(1): 23032, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155198

RESUMO

Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We uncover an unexpected role for glutamine in epithelial cancer cell orientation, which could be replaced by alfa-keto glutarate but not glucose.


Assuntos
Glutamina , Neoplasias , Humanos , Movimento Celular , Microfluídica , Dispositivos Lab-On-A-Chip
3.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886517

RESUMO

Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that in vivo neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone. Neutrophil swarm function required leukotriene B4 receptor 1 (BLT1) expression, and swarms were further characterized by peripheral association of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) showing that OPC recruits PMN-MDSCs to this site of infection. Furthermore, PMN-MDSCs associated with Ca hyphae had no direct antifungal effect but showed prolonged survival times and increased autophagy. Thus in vivo neutrophil swarms are complex structures with spatially associated PMN-MDSCs that likely contribute immunoregulatory functions to resolve OPC. These swarm structures have an important function in preventing deep invasion by Ca within the oral mucosa and represent a mechanism for increased disease severity under immune deficient clinical settings.

4.
Nat Neurosci ; 26(9): 1489-1504, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37620442

RESUMO

Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures. Infiltration of CD8+ T cells into AD cultures led to increased microglial activation, neuroinflammation and neurodegeneration. Using single-cell RNA-sequencing, we identified that infiltration of T cells into AD cultures led to induction of interferon-γ and neuroinflammatory pathways in glial cells. We found key roles for the C-X-C motif chemokine ligand 10 (CXCL10) and its receptor, CXCR3, in regulating T cell infiltration and neuronal damage in AD cultures. This human neuroimmune axis model is a useful tool to study the effects of peripheral immune cells in brain disease.


Assuntos
Doença de Alzheimer , Linfócitos T CD8-Positivos , Humanos , Neuroimunomodulação , Neuroglia , Neurônios
5.
Cryst Growth Des ; 23(8): 6067-6080, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37547880

RESUMO

Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data. Thus we designed a droplet-based microfluidic platform capable of identifying the droplets with crystals emerging upon Nd:YAG laser irradiation using the deep learning method. In our experiments, we used supersaturated solutions of KCl in water, and the effect of laser intensity, wavelength (1064, 532, and 355 nm), solution supersaturation (S), solution filtration, and intentional doping with nanoparticles on the nucleation probability is quantified and compared to control cooling crystallization experiments. Ability of dielectric polarization and the nanoparticle heating mechanisms proposed for NPLIN to explain the acquired results is tested. Solutions with lower supersaturation (S = 1.05) exhibit significantly higher NPLIN probabilities than those in the control experiments for all laser wavelengths above a threshold intensity (50 MW/cm2). At higher supersaturation studied (S = 1.10), irradiation was already effective at lower laser intensities (10 MW/cm2). No significant wavelength effect was observed besides irradiation with 355 nm light at higher laser intensities (≥50 MW/cm2). Solution filtration and intentional doping experiments showed that nanoimpurities might play a significant role in explaining NPLIN phenomena.

6.
Front Pediatr ; 11: 1177048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425266

RESUMO

Introduction: Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children. Methods: We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19. We performed exploratory analyses to identify other hematologic parameters in the inflammatory signature of pediatric SARS-CoV-2 infection and determine the most effective combination of markers for assessing COVID-19 severity in children. Results: Monocyte anisocytosis increases with COVID-19 severity and need for hospitalization. Although other inflammatory markers such as lymphocyte count, neutrophil/lymphocyte ratio, C-reactive protein, and cytokines correlate with disease severity, these parameters were not as sensitive as MDW for identifying severe disease in children. An MDW threshold of 23 offers a sensitive marker for severe pediatric COVID-19, with improved accuracy when assessed in combination with other hematologic parameters. Conclusion: Monocyte anisocytosis corresponds with shifting hematologic profiles and inflammatory markers in children with COVID-19, and MDW serves as a clinically accessible biomarker for severe COVID-19 in children.

7.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425711

RESUMO

Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.

8.
J Oral Microbiol ; 15(1): 2217067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283724

RESUMO

Recent studies uncovered that Fusobacterium nucleatum (Fn), a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils. We show that Fn survives within human neutrophils after phagocytosis. Using in vitro microfluidic devices, we determine that human neutrophils can protect and transport Fn over large distances. Moreover, we validate these observations in vivo by showing that neutrophils disseminate Fn using a zebrafish model. Our data support the emerging hypothesis that bacterial dissemination by neutrophils is a mechanistic link between oral and systemic diseases. Furthermore, our results may ultimately lead to therapeutic approaches that target specific host-bacteria interactions, including the dissemination process.

9.
Res Sq ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205536

RESUMO

Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We find that the directional decisions of cancer cells moving through bifurcating channels in response to self-generated epidermal growth factor (EGF) gradients require the presence of glutamine in the culture media. A biophysical model helps quantify the contribution of glucose and glutamine to cancer cell orientation during migration in self-generated gradients. Our study uncovers an unexpected interplay between cancer cell metabolism and cancer cell migration studies and may eventually lead to new ways to delay cancer cell invasion.

10.
Lab Chip ; 23(7): 1879-1885, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857665

RESUMO

Neutrophils are the most numerous white blood cells and are the first to arrive at sites of inflammation and infection. Thus, neutrophil behavior provides a comprehensive biomarker for antimicrobial defenses. Several microfluidic tools have been developed to test neutrophil chemotaxis, phagocytosis, extrusion of extracellular traps, etc. Traditional tools rely on purified neutrophil samples, which require lengthy and expensive isolation procedures from large volumes of blood. In the absence of such isolation, visualizing neutrophils in blood is complicated by the overwhelming number of red blood cells (RBCs), which outnumber neutrophils by 1000 : 1. Recently, several microfluidic technologies have been designed to analyze neutrophils directly in blood, by separating neutrophils on selectin coated surfaces before the migration assay or blocking the advance of RBCs with the moving neutrophils. However, RBC contamination remains an issue, albeit with a reduced ratio, down to 1 : 1. Here, we present an RBC-debulking strategy for neutrophil assays based on microscale passive redirection filters (PRFs) that reduce RBC contamination down to as few as a 1 : 17 RBC to neutrophil ratio. We compare the performance of different PRF designs and measure changes in neutrophil chemotaxis velocity and directionality following immune stimulation of whole blood.


Assuntos
Quimiotaxia , Neutrófilos , Neutrófilos/fisiologia , Quimiotaxia/fisiologia , Quimiotaxia de Leucócito/fisiologia , Microfluídica/métodos , Eritrócitos
11.
Front Immunol ; 14: 1083339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936945

RESUMO

Megakaryocytes (MKs) are precursors to platelets, the second most abundant cells in the peripheral circulation. However, while platelets are known to participate in immune responses and play significant functions during infections, the role of MKs within the immune system remains largely unexplored. Histological studies of sepsis patients identified increased nucleated CD61+ cells (MKs) in the lungs, and CD61+ staining (likely platelets within microthrombi) in the kidneys, which correlated with the development of organ dysfunction. Detailed imaging cytometry of peripheral blood from patients with sepsis found significantly higher MK counts, which we predict would likely be misclassified by automated hematology analyzers as leukocytes. Utilizing in vitro techniques, we show that both stem cell derived MKs (SC MKs) and cells from the human megakaryoblastic leukemia cell line, Meg-01, undergo chemotaxis, interact with bacteria, and are capable of releasing chromatin webs in response to various pathogenic stimuli. Together, our observations suggest that MK cells display some basic innate immune cell behaviors and may actively respond and play functional roles in the pathophysiology of sepsis.


Assuntos
Megacariócitos , Sepse , Humanos , Megacariócitos/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Imunidade Inata , Sepse/metabolismo
13.
Cell Syst ; 14(3): 196-209.e6, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827986

RESUMO

Maintaining persistent migration in complex environments is critical for neutrophils to reach infection sites. Neutrophils avoid getting trapped, even when obstacles split their front into multiple leading edges. How they re-establish polarity to move productively while incorporating receptor inputs under such conditions remains unclear. Here, we challenge chemotaxing HL60 neutrophil-like cells with symmetric bifurcating microfluidic channels to probe cell-intrinsic processes during the resolution of competing fronts. Using supervised statistical learning, we demonstrate that cells commit to one leading edge late in the process, rather than amplifying structural asymmetries or early fluctuations. Using optogenetic tools, we show that receptor inputs only bias the decision similarly late, once mechanical stretching begins to weaken each front. Finally, a retracting edge commits to retraction, with ROCK limiting sensitivity to receptor inputs until the retraction completes. Collectively, our results suggest that cell edges locally adopt highly stable protrusion/retraction programs that are modulated by mechanical feedback.


Assuntos
Proteínas de Transporte , Neutrófilos , Neutrófilos/fisiologia , Movimento Celular/fisiologia
14.
Cell Rep Med ; 3(12): 100848, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36476388

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory illness characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigenemia, cytokine storm, and immune dysregulation. In severe COVID-19, neutrophil activation is central to hyperinflammatory complications, yet the role of neutrophils in MIS-C is undefined. Here, we collect blood from 152 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 78 pediatric controls. We find that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism that is distinct from the neutrophil interferon-stimulated gene (ISG) response we observe in pediatric COVID-19. Moreover, we observe extensive spontaneous neutrophil extracellular trap (NET) formation in MIS-C, and we identify neutrophil activation and degranulation signatures. Mechanistically, we determine that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Our findings suggest that hyperinflammatory presentation during MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia, driven by uncontrolled neutrophil activation and NET release in the vasculature.


Assuntos
COVID-19 , Neutrófilos , Humanos , Criança , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
15.
Front Immunol ; 13: 1038349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341418

RESUMO

Helicobacter pylori is a major human pathogen that colonizes the gastric mucosa and plays a causative role in development of peptic ulcers and gastric cancer. Neutrophils are heavily infected with this organism in vivo and play a prominent role in tissue destruction and disease. Recently, we demonstrated that H. pylori exploits neutrophil plasticity as part of its virulence strategy eliciting N1-like subtype differentiation that is notable for profound nuclear hypersegmentation. We undertook this study to test the hypothesis that hypersegmentation may enhance neutrophil migratory capacity. However, EZ-TAXIScan™ video imaging revealed a previously unappreciated and progressive chemotaxis defect that was apparent prior to hypersegmentation onset. Cell speed and directionality were significantly impaired to fMLF as well as C5a and IL-8. Infected cells oriented normally in chemotactic gradients, but speed and direction were impaired because of a uropod retraction defect that led to cell elongation, nuclear lobe trapping in the contracted rear and progressive narrowing of the leading edge. In contrast, chemotactic receptor abundance, adhesion, phagocytosis and other aspects of cell function were unchanged. At the molecular level, H. pylori phenocopied the effects of Blebbistatin as indicated by aberrant accumulation of F-actin and actin spikes at the uropod together with enhanced ROCKII-mediated phosphorylation of myosin IIA regulatory light chains at S19. At the same time, RhoA and ROCKII disappeared from the cell rear and accumulated at the leading edge whereas myosin IIA was enriched at both cell poles. These data suggest that H. pylori inhibits the dynamic changes in myosin IIA contractility and front-to-back polarity that are essential for chemotaxis. Taken together, our data advance understanding of PMN plasticity and H. pylori pathogenesis.


Assuntos
Helicobacter pylori , Transtornos Leucocíticos , Miosina não Muscular Tipo IIA , Humanos , Quimiotaxia , Neutrófilos/metabolismo , Helicobacter pylori/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Transtornos Leucocíticos/metabolismo , Actinas/metabolismo , Cadeias Leves de Miosina/metabolismo
16.
iScience ; 25(10): 105226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267914

RESUMO

Neutrophil swarming is an emergent host defense mechanism triggered by targets larger than a single neutrophil's capacity to phagocytose. Swarming synergizes neutrophil functions, including chemotaxis, phagocytosis, and reactive oxygen species (ROS) production, and coordinates their deployment by many interacting neutrophils. The potent inflammatory lipid mediator leukotriene B4 (LTB4) has been established as central to orchestrating neutrophil activities during swarming. However, the details regarding how this eicosanoid choreographs the neutrophils involved in swarming are not well explained. Here we leverage microfluidics, genetically deficient mouse cells, and targeted metabolipidomic analysis to demonstrate that transcellular biosynthesis occurs among neutrophils to generate LTB4. Furthermore, transcellular biosynthesis is an entirely sufficient means of generating LTB4 for the purposes of orchestrating neutrophil swarming. These results further our understanding of how neutrophils coordinate their activities during swarming, which will be critical in the design of eventual therapies that can harness the power of swarming behavior.

17.
BMC Pediatr ; 22(1): 392, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787254

RESUMO

BACKGROUND AND OBJECTIVES: Multisystem Inflammatory Syndrome in Children (MIS-C) is an emerging complication of COVID-19 which lacks a definitive diagnostic test and evidence-based guidelines for workup. We sought to assess practitioners' preferences when initiating a workup for pediatric patients presenting with symptoms concerning for MIS-C. METHODS: In a cross-sectional vignette-based survey, providers were presented with clinical vignettes of a patient presenting with 24 h of fever from a community with high rates of COVID-19. Respondents were asked about their general practices in pursuing a workup for potential MIS-C including testing obtained, criteria for diagnosis, and timing to confirm or rule out the diagnosis. RESULTS: Most of the 174 respondents were physicians from the United States at academic medical centers. The majority of providers would not initiate MIS-C workup for fever and non-specific symptoms unless the fever lasted more than 72 h. Skin rash, abdominal pain, and shortness of breath were symptoms that raised greatest concern for MIS-C. Most providers would obtain COVID-19 PCR or antigen testing, plus blood work, in the initial workup. The list of laboratory studies providers would obtain is extensive. Providers primarily rely on cardiac involvement to confirm a MIS-C diagnosis, and establishing a diagnosis takes 24-48 h. CONCLUSIONS: Significant heterogeneity exists amongst providers as to when to initiate the MIS-C workup, the order and content of the workup, and how to definitively diagnose MIS-C. A diagnostic test with high sensitivity and specificity for MIS-C and refined evidence-based guidelines are needed to expedite diagnosis and treatment.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/diagnóstico , Criança , Estudos Transversais , Humanos , Síndrome de Resposta Inflamatória Sistêmica , Estados Unidos
19.
BMC Infect Dis ; 22(1): 563, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725405

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication that can develop weeks to months after an initial SARS-CoV-2 infection. A complex, time-consuming laboratory evaluation is currently required to distinguish MIS-C from other illnesses. New assays are urgently needed early in the evaluation process to expedite MIS-C workup and initiate treatment when appropriate. This study aimed to measure the performance of a monocyte anisocytosis index, obtained on routine complete blood count (CBC), to rapidly identify subjects with MIS-C at risk for cardiac complications. METHODS: We measured monocyte anisocytosis, quantified by monocyte distribution width (MDW), in blood samples collected from children who sought medical care in a single medical center from April 2020 to October 2020 (discovery cohort). After identifying an effective MDW threshold associated with MIS-C, we tested the utility of MDW as a tier 1 assay for MIS-C at multiple institutions from October 2020 to October 2021 (validation cohort). The main outcome was the early screening of MIS-C, with a focus on children with MIS-C who displayed cardiac complications. The screening accuracy of MDW was compared to tier 1 routine laboratory tests recommended for evaluating a child for MIS-C. RESULTS: We enrolled 765 children and collected 846 blood samples for analysis. In the discovery cohort, monocyte anisocytosis, quantified as an MDW threshold of 24.0, had 100% sensitivity (95% CI 78-100%) and 80% specificity (95% CI 69-88%) for identifying MIS-C. In the validation cohort, an initial MDW greater than 24.0 maintained a 100% sensitivity (95% CI 80-100%) and monocyte anisocytosis displayed a diagnostic accuracy greater that other clinically available hematologic parameters. Monocyte anisocytosis decreased with disease resolution to values equivalent to those of healthy controls. CONCLUSIONS: Monocyte anisocytosis detected by CBC early in the clinical workup improves the identification of children with MIS-C with cardiac complications, thereby creating opportunities for improving current practice guidelines.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/diagnóstico , Criança , Humanos , Monócitos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/complicações , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
20.
J Leukoc Biol ; 111(6): 1133-1145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355310

RESUMO

The use of mature neutrophil (granulocyte) transfusions for the treatment of neutropenic patients with invasive fungal infections (IFIs) has been the focus of multiple clinical trials. Despite these efforts, the transfusion of mature neutrophils has resulted in limited clinical benefit, likely owing to problems of insufficient numbers and the very short lifespan of these donor cells. In this report, we employed a system of conditionally immortalized murine neutrophil progenitors that are capable of continuous expansion, allowing for the generation of unlimited numbers of homogenous granulocyte-macrophage progenitors (GMPs). These GMPs were assayed in vivo to demonstrate their effect on survival in 2 models of IFI: candidemia and pulmonary aspergillosis. Mature neutrophils derived from GMPs executed all cardinal functions of neutrophils. Transfused GMPs homed to the bone marrow and spleen, where they completed normal differentiation to mature neutrophils. These neutrophils were capable of homing and extravasation in response to inflammatory stimuli using a sterile peritoneal challenge model. Furthermore, conditionally immortalized GMP transfusions significantly improved survival in models of candidemia and pulmonary aspergillosis. These data confirm the therapeutic benefit of prophylactic GMP transfusions in the setting of neutropenia and encourage development of progenitor cellular therapies for the management of fungal disease in high-risk patients.


Assuntos
Infecções Fúngicas Invasivas , Neutropenia , Neutrófilos , Animais , Candidemia , Terapia Baseada em Transplante de Células e Tecidos , Infecções Fúngicas Invasivas/prevenção & controle , Transfusão de Leucócitos , Camundongos , Neutropenia/terapia , Neutrófilos/transplante , Aspergilose Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...