Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476644

RESUMO

New variants of SARS-CoV-2 with potential for enhanced transmission, replication, and immune evasion capabilities continue to emerge causing reduced vaccine efficacy and/or treatment failure. As of January 2021, the WHO has defined five variants of concern (VOC): B.1.1.7 (Alpha, ), B.1.351 (Beta, {beta}), P.1 (Gamma, {gamma}), B.1.617.2 (Delta, {delta}), and B.1.1.529 (Omicron, o). To provide a therapeutic option for the treatment of COVID-19 and variants, Nirmatrelvir, the antiviral component of PAXLOVID, an oral outpatient treatment recently authorized for conditional or emergency use treatment of COVID-19, was developed to inhibit SARS-CoV-2 replication. Nirmatrelvir (PF-07321332) is a specific inhibitor of coronavirus main protease (Mpro, also referred to as 3CLpro), with potent antiviral activity against several human coronaviruses, including SARS-CoV-2, SARS-CoV, and MERS (Owen et al, Science 2021. doi: 10.1126/science.abl4784). Here, we evaluated PF-07321332 against the five SARS-CoV-2 VOC (, {beta}, {gamma}, {delta},, o) and two Variants of Interest or VOI, C.37 ({lambda}) and B.1.621 (), using qRT-PCR in VeroE6 cells lacking the P-glycoprotein (Pgp) multidrug transporter gene (VeroE6 P-gp knockout cells). Nirmatrelvir potently inhibited USA-WA1/2020 strain, and , {beta}, {gamma}, {lambda}, {delta}, , and o variants in VeroE6 P-gp knockout cells with mean EC50 values 38.0 nM, 41.0 nM, 127.2 nM, 24.9 nM, 21.2 nM, 15.9 nM, 25.7 nM and 16.2 nM, respectively. Sequence analysis of the Mpro encoded by the variants showed ~100% identity of active site amino acid sequences, reflecting the essential role of Mpro during viral replication leading to ability of Nirmatrelvir to exhibit potent activity across all the variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...