Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
RSC Adv ; 10(4): 1878-1882, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35494599

RESUMO

We investigated the surface morphology changes in a 2 inch-diameter, c-plane, free-standing GaN wafer using X-ray diffraction topography in a grazing-incidence geometry. We observed a decrease in the peak intensity and increase in the full width at half maximum of the GaN 112̄4 Bragg peak after the deposition of a homoepitaxial layer on the same GaN wafer. However, the lattice plane bending angles did not change after homoepitaxial layer deposition. Distorted-wave Born approximation calculations near the total external reflection condition revealed a decrease in the X-ray incidence angle of the 112̄4 Bragg peak after the homoepitaxial layer deposition. The decrease in both X-ray penetration and incidence angle induced broader and weaker diffraction peaks from the surface instead of the bulk GaN.

2.
Nanoscale Res Lett ; 13(1): 403, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30539346

RESUMO

Inefficient Mg-induced p-type doping has been remained a major obstacle in the development of GaN-based electronic devices for solid-state lighting and power applications. This study reports comparative structural analysis of defects in GaN layers on freestanding GaN substrates where Mg incorporation is carried out via two approaches: ion implantation and epitaxial doping. Scanning transmission electron microscopy revealed the existence of pyramidal and line defects only in Mg-implanted sample whereas Mg-doped sample did not show presence of these defects which suggests that nature of defects depends upon incorporation method. From secondary ion mass spectrometry, a direct correspondence is observed between Mg concentrations and location and type of these defects. Our investigations suggest that these pyramidal and line defects are Mg-rich species and their formation may lead to reduced free hole densities which is still a major concern for p-GaN-based material and devices. As freestanding GaN substrates offer a platform for realization of p-n junction-based vertical devices, comparative structural investigation of defects originated due to different Mg incorporation processes in GaN layers on such substrates is likely to give more insight towards understanding Mg self-compensation mechanisms and then optimizing Mg doping and/or implantation process for the advancement of GaN-based device technology.

3.
Sensors (Basel) ; 15(6): 14757-65, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26110410

RESUMO

The interaction of hydrogen with Pd-SiO2 interfaces has been investigated for the first time using first-principles calculations based on density functional theory. The hydrogen-induced polarization at the Pd-SiO2 interfaces was evaluated using Pd-SiO2 interface supercells. As a result, the potential change induced by interfacial hydrogen atoms was not observed even for hydrogen concentration of ~1.3 × 10(15) cm(-2) at the Pd-SiO2 interface. This result implies that hydrogen does not create an electric double layer at the Pd-SiO2 interface but change the property of the SiO2 region, resulting in the hydrogen sensitivity of the devices.

4.
Sensors (Basel) ; 11(1): 674-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22346597

RESUMO

In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C-V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C-V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C-V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I-V) characterization, suggesting that low-frequency C-V method would be effective in detecting very low hydrogen concentrations.

5.
Phys Chem Chem Phys ; 8(9): 1116-21, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16633593

RESUMO

We report the photooxidation of toluene over nitrogen doped TiO(2) (TiO(2-x)N(x)) under visible light irradiation. The photocatalytic oxidation of toluene in air over TiO(2-x)N(x) powders was studied using diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), gas chromatography (GC), ion chromatography (IC), and gas chromatography mass spectrometry (GC-MS), focusing on the photocatalytic decomposition processes of toluene. Results obtained indicate that toluene, weakly adsorbed on the catalyst surface, is initially photooxidized to benzaldehyde which adsorbs onto the TiO(2-x)N(x) surface more strongly, leading to the formation of ring-opening products such as carboxylic acids and aldehydes. No gaseous intermediates were detected during the photooxidation. Major intermediates adsorbed at the catalyst surface were oxalic acid, (COOH)(2), acetic acid, CH(3)COOH, formic acid, HCOOH, and pyruvic acid, CH(3)COCOOH, whereas more complicated carboxylic species, including propionic acid, CH(3)CH(2)COOH, isovaleric acid, (CH(3))(2)CHCH(2)COOH, and succinic acid, (CH(2)COOH)(2), were also found in the early stage of the photooxidation. These intermediate products were gradually photodegraded to CO(2) and H(2)O under visible light irradiation.


Assuntos
Titânio/química , Catálise , Luz , Oxirredução , Fotoquímica , Titânio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA