Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38180252

RESUMO

In density-functional theory, the exchange-correlation (XC) energy can be defined exactly through the coupling-constant (λ) averaged XC hole n̄xc(r,r'), representing the probability depletion of finding an electron at r' due to an electron at r. Accurate knowledge of n̄xc(r,r') has been crucial for developing XC energy density-functional approximations and understanding their performance for molecules and materials. However, there are very few systems for which accurate XC holes have been calculated since this requires evaluating the one- and two-particle reduced density matrices for a reference wave function over a range of λ while the electron density remains fixed at the physical (λ = 1) density. Although the coupled-cluster singles and doubles (CCSD) method can yield exact results for a two-electron system in the complete basis set limit, it cannot capture the electron-electron cusp using finite basis sets. Focusing on Hooke's atom as a two-electron model system for which certain analytic solutions are known, we examine the effect of this cusp error on the XC hole calculated using CCSD. The Lieb functional is calculated at a range of coupling constants to determine the λ-integrated XC hole. Our results indicate that, for Hooke's atoms, the error introduced by the description of the electron-electron cusp using Gaussian basis sets at the CCSD level is negligible compared to the basis set incompleteness error. The system-, angle-, and coupling-constant-averaged XC holes are also calculated and provide a benchmark against which the Perdew-Burke-Ernzerhof and local density approximation XC hole models are assessed.

2.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38018753

RESUMO

We present a numerical approach to magnetic optical rotation based on real-time time-dependent electronic-structure theory. Not relying on perturbation expansions in the magnetic field strength, the formulation allows us to test the range of validity of the linear relation between the rotation angle per unit path length and the magnetic field strength that was established empirically by Verdet 160 years ago. Results obtained from time-dependent coupled-cluster and time-dependent current density-functional theory are presented for the closed-shell molecules H2, HF, and CO in magnetic fields up to 55 kT at standard temperature and pressure conditions. We find that Verdet's linearity remains valid up to roughly 10-20 kT, above which significant deviations from linearity are observed. Among the three current density-functional approximations tested in this work, the current-dependent Tao-Perdew-Staroverov-Scuseria hybrid functional performs the best in comparison with time-dependent coupled-cluster singles and doubles results for the magnetic optical rotation.

3.
J Chem Theory Comput ; 18(12): 7412-7427, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36414537

RESUMO

An extension of the embedded fragment method for calculations on molecular clusters is presented, which includes strong external magnetic fields. The approach is flexible, allowing for calculations at the Hartree-Fock, current-density-functional theory, Møller-Plesset perturbation theory, and coupled-cluster levels using London atomic orbitals. For systems consisting of discrete molecular subunits, calculations using London atomic orbitals can be performed in a computationally tractable manner for systems beyond the reach of conventional calculations, even those accelerated by resolution-of-the-identity or Cholesky decomposition methods. To assess the applicability of the approach, applications to water clusters are presented, showing how strong magnetic fields enhance binding within the clusters. However, our calculations suggest that, contrary to previous suggestions in the literature, this enhanced binding may not be directly attributable to strengthening of hydrogen bonding. Instead, these results suggest that this arises for larger field strengths as a response of the system to the presence of the external field, which induces a charge density build up between the monomer units. The approach is embarrassingly parallel and its computational tractability is demonstrated for clusters of up to 103 water molecules in triple-ζ basis sets, which would correspond to conventional calculations with more than 12 000 basis functions.

4.
J Chem Phys ; 157(17): 174106, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347690

RESUMO

Machine learning techniques have received growing attention as an alternative strategy for developing general-purpose density functional approximations, augmenting the historically successful approach of human-designed functionals derived to obey mathematical constraints known for the exact exchange-correlation functional. More recently, efforts have been made to reconcile the two techniques, integrating machine learning and exact-constraint satisfaction. We continue this integrated approach, designing a deep neural network that exploits the exact constraint and appropriate norm philosophy to de-orbitalize the strongly constrained and appropriately normed (SCAN) functional. The deep neural network is trained to replicate the SCAN functional from only electron density and local derivative information, avoiding the use of the orbital-dependent kinetic energy density. The performance and transferability of the machine-learned functional are demonstrated for molecular and periodic systems.

5.
J Chem Phys ; 156(20): 204113, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649858

RESUMO

A novel implementation for the calculation of molecular gradients under strong magnetic fields is employed at the current-density functional theory level to optimize the geometries of molecular structures, which change significantly under these conditions. An analog of the ab initio random structure search is utilized to determine the ground-state equilibrium geometries for Hen and CHn systems at high magnetic field strengths, revealing the most stable structures to be those in high-spin states with a planar geometry aligned perpendicular to the field. The electron and current densities for these systems have also been investigated to develop an explanation of chemical bonding in the strong field regime, providing an insight into the exotic chemistry present in these extreme environments.

6.
Chem Sci ; 13(18): 5311-5324, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655570

RESUMO

An extension of conceptual DFT to include the influence of an external magnetic field is proposed in the context of a program set up to cope with the ever increasing variability of reaction conditions and concomitant reactivity. The two simplest global reactivity descriptors, the electronic chemical potential (µ) and the hardness (η), are considered for the main group atoms H-Kr using current density-functional theory. The magnetic field strength, |B|, is varied between 0.0 and 1.0 B 0 = he -1 a 0 -2 ≈ 2.3505 × 105 T, encompassing the Coulomb and intermediate regimes. The carbon atom is studied as an exemplar system to gain insight into the behaviour of the neutral, cationic and anionic species under these conditions. Their electronic configurations change with increasing |B|, leading to a piecewise behaviour of the ionization energy (I) and electron affinity (A) values as a function of |B|. This results in complex behaviour of properties such as the electronegativity χ = -1/2(I + A) = -µ and hardness η = 1/2(I - A). This raises an interesting question: to what extent are atomic properties periodic in the presence of a magnetic field? In the Coulomb regime, close to |B| = 0, we find the familiar periodicity of the atomic properties, and make the connections to response functions central to conceptual DFT. However, as the field increases in the intermediate regime configurational changes of the atomic species lead to discontinuous changes in their properties; fundamentally changing their behaviour, which is illustrated by constructing a periodic table of χ and η values at |B| = 0.5 B 0. These values tend to increase for groups 1-2 and decrease for groups 16-18, leading to a narrower range overall and suggesting substantial changes in the chemistry of the main group elements. Changes within each group are also examined as a function of |B|. These are more complex to interpret due to the larger number of configurations accessible to heavier elements at high field. This is illustrated for group 17 where Cl and Br have qualitatively different configurations to their lighter cogener at |B| = 0.5 B 0. The insight into periodic trends in strong magnetic fields may provide a crucial starting point for predicting chemical reactivity under these exotic conditions.

7.
J Chem Theory Comput ; 17(9): 5492-5508, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517708

RESUMO

Self-consistent field methods for excited states offer an attractive low-cost route to study not only excitation energies but also properties of excited states. Here, we present the generalization of two self-consistent field methods, the maximum overlap method (MOM) and the σ-SCF method, to calculate excited states in strong magnetic fields and investigate their stability and accuracy in this context. These methods use different strategies to overcome the well-known variational collapse of energy-based optimizations to the lowest solution of a given symmetry. The MOM tackles this problem in the definition of the orbital occupations to constrain the self-consistent field procedure to converge on excited states, while the σ-SCF method is based on the minimization of the variance instead of the energy. To overcome the high computational cost of the variance minimization, we present a new implementation of the σ-SCF method with the resolution of identity approximation, allowing the use of large basis sets, which is an important requirement for calculations in strong magnetic fields. The accuracy of these methods is assessed by comparison with the benchmark literature data for He, H2, and CH+. The results reveal severe limitations of the variance-based scheme, which become more acute in large basis sets. In particular, many states are not accessible using variance optimization. Detailed analysis shows that this is a general feature of variance optimization approaches due to the masking of local minima in the optimization. In contrast, the MOM shows promising performance for computing excited states under these conditions, yielding results consistent with available benchmark data for a diverse range of electronic states.

8.
J Chem Theory Comput ; 17(4): 2137-2165, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33724806

RESUMO

An implementation of real-time time-dependent Hartree-Fock (RT-TDHF) and current density functional theory (RT-TDCDFT) for molecules in strong uniform magnetic fields is presented. In contrast to earlier implementations, the present work enables the use of the RT-TDCDFT formalism, which explicitly includes field-dependent terms in the exchange-correlation functional. A range of current-dependent exchange-correlation functionals based on the TPSS functional are considered, including a range-separated variant, which is particularly suitable for application to excited state calculations. The performance of a wide range of propagator algorithms for real-time methods is investigated in this context. A recently proposed molecular orbital pair decomposition analysis allows for assignment of electronic transitions, providing detailed information about which molecular orbitals are involved in each excitation. The application of these methods is demonstrated for the electronic absorption spectra of N2 and H2O both in the absence and in the presence of a magnetic field. The dependence of electronic spectra on the magnetic field strength and its orientation relative to the molecule is studied. The complex evolution of the absorption spectra with magnetic field is rationalized using the molecular orbital pair decomposition analysis, which provides crucial insight in strong fields where the spectra are radically different from their zero-field counterparts.

9.
J Chem Theory Comput ; 17(4): 2166-2185, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33724812

RESUMO

An efficient implementation of geometrical derivatives at the Hartree-Fock (HF) and current-density functional theory (CDFT) levels is presented for the study of molecular structure in strong magnetic fields. The required integral derivatives are constructed using a hybrid McMurchie-Davidson and Rys quadrature approach, which combines the amenability of the former to the evaluation of derivative integrals with the efficiency of the latter for basis sets with high angular momentum. In addition to its application to evaluating derivatives of four-center integrals, this approach is also applied to gradients using the resolution-of-the-identity approximation, enabling efficient optimization of molecular structure for many-electron systems under a strong magnetic field. The CDFT contributions have been implemented for a wide range of density functionals up to and including the meta-GGA level with current-density dependent contributions and (range-separated) hybrids for the first time. Illustrative applications are presented to the OH and benzene molecules, revealing the rich and complex chemistry induced by the presence of an external magnetic field. Challenges for geometry optimization in strong fields are highlighted, along with the requirement for careful analysis of the resulting electronic structure at each stationary point. The importance of correlation effects is examined by comparison of results at the HF and CDFT levels. The present implementation of molecular gradients at the CDFT level provides a cost-effective approach to the study of molecular structure under strong magnetic fields, opening up many new possibilities for the study of chemistry in this regime.

10.
J Phys Chem A ; 125(1): 459-475, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356245

RESUMO

We present a Gaussian-basis implementation of orbital-free density-functional theory (OF-DFT) in which the trust-region image method (TRIM) is used for optimization. This second-order optimization scheme has been constructed to provide benchmark all-electron results with very tight convergence of the particle-number constraint, associated chemical potential, and electron density. It is demonstrated that, by preserving the saddle-point nature of the optimization and simultaneously optimizing the density and chemical potential, an order of magnitude reduction in the number of iterations required for convergence is obtained. The approach is compared and contrasted with a new implementation of the nested optimization scheme put forward by Chan, Cohen, and Handy. Our implementation allows for semilocal kinetic-energy (and exchange-correlation) functionals to be handled self-consistently in all-electron calculations. The all-electron Gaussian-basis setting for these calculations will enable direct comparison with a wide range of standard high-accuracy quantum-chemical methods as well as with Kohn-Sham density-functional theory. We expect that the present implementation will provide a useful tool for analyzing the performance of approximate kinetic-energy functionals in finite systems.

12.
J Phys Chem A ; 124(7): 1321-1333, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31986039

RESUMO

A suite of tools for the analysis of magnetically induced currents is introduced. These are applicable to both the weak-field regime, well described by linear response perturbation theory, and to the strong-field regime, which is inaccessible to such methods. A disc-based quadrature scheme is proposed for the analysis of magnetically induced current susceptibilities, providing quadratures that are consistently defined between different molecular systems and applicable to both planar 2D and general 3D molecular systems in a black-box manner. The applicability of the approach is demonstrated for a range of planar ring systems, the ground and excited states of the benzene molecule, and the ring, bowl, and cage isomers of the C20 molecule in the presence of a weak magnetic field. In the presence of a strong magnetic field, the para- to diamagnetic transition of the BH molecule is studied, demonstrating that magnetically induced currents present a visual interpretation of this phenomenon, providing insight beyond that accessible using linear response methods.

13.
J Chem Phys ; 147(13): 134107, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987103

RESUMO

A recently proposed variation principle [N. I. Gidopoulos, Phys. Rev. A 83, 040502(R) (2011)] for the determination of Kohn-Sham effective potentials is examined and extended to arbitrary electron-interaction strengths and to mixed states. Comparisons are drawn with Lieb's convex-conjugate functional, which allows for the determination of a potential associated with a given electron density by maximization, yielding the Kohn-Sham potential for a non-interacting system. The mathematical structure of the two functionals is shown to be intrinsically related; the variation principle put forward by Gidopoulos may be expressed in terms of the Lieb functional. The equivalence between the information obtained from the two approaches is illustrated numerically by their implementation in a common framework.

14.
J Chem Theory Comput ; 13(8): 3636-3649, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28692291

RESUMO

The use of London atomic orbitals (LAOs) in a nonperturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiencies of generalized McMurchie-Davidson (MD), Head-Gordon-Pople (HGP), and Rys quadrature schemes are compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalized algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta; thus, a simple mixed scheme is put forward that selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm.

15.
Phys Chem Chem Phys ; 19(8): 6169-6183, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28230218

RESUMO

We investigate the construction of approximated exchange-correlation functionals by interpolating locally along the adiabatic connection between the weak- and the strong-coupling regimes, focussing on the effect of using approximate functionals for the strong-coupling energy densities. The gauge problem is avoided by dealing with quantities that are all locally defined in the same way. Using exact ingredients at weak coupling we are able to isolate the error coming from the approximations at strong coupling only. We find that the nonlocal radius model, which retains some of the non-locality of the exact strong-coupling regime, yields very satisfactory results. We also use interpolation models and quantities from the weak- and strong-coupling regimes to define a correlation-type indicator and a lower bound to the exact exchange-correlation energy. Open problems, related to the nature of the local and global slope of the adiabatic connection at weak coupling, are also discussed.

16.
J Chem Theory Comput ; 12(6): 2598-610, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27116427

RESUMO

The construction of density-functional approximations is explored by modeling the adiabatic connection locally, using energy densities defined in terms of the electrostatic potential of the exchange-correlation hole. These local models are more amenable to the construction of size-consistent approximations than their global counterparts. In this work we use accurate input local ingredients to assess the accuracy of a range of local interpolation models against accurate exchange-correlation energy densities. The importance of the strictly correlated electrons (SCE) functional describing the strong coupling limit is emphasized, enabling the corresponding interpolated functionals to treat strong correlation effects. In addition to exploring the performance of such models numerically for the helium and beryllium isoelectronic series and the dissociation of the hydrogen molecule, an approximate analytic model is presented for the initial slope of the local adiabatic connection. Comparisons are made with approaches based on global models, and prospects for future approximations based on the local adiabatic connection are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...