Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 50(4): 901-913, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33454913

RESUMO

Collaborative monitoring over broad scales and levels of ecological organization can inform conservation efforts necessary to address the contemporary biodiversity crisis. An important challenge to collaborative monitoring is motivating local engagement with enough buy-in from stakeholders while providing adequate top-down direction for scientific rigor, quality control, and coordination. Collaborative monitoring must reconcile this inherent tension between top-down control and bottom-up engagement. Highly mobile and cryptic taxa, such as bats, present a particularly acute challenge. Given their scale of movement, complex life histories, and rapidly expanding threats, understanding population trends of bats requires coordinated broad-scale collaborative monitoring. The North American Bat Monitoring Program (NABat) reconciles top-down, bottom-up tension with a hierarchical master sample survey design, integrated data analysis, dynamic data curation, regional monitoring hubs, and knowledge delivery through web-based infrastructure. NABat supports collaborative monitoring across spatial and organizational scales and the full annual lifecycle of bats.


Assuntos
Quirópteros , Conservação dos Recursos Naturais , Animais , Biodiversidade
2.
Ecology ; 101(4): e02962, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872426

RESUMO

Recent discussions of model selection and multimodel inference highlight a general challenge for researchers: how to convey the explanatory content of a hypothesized model or set of competing models clearly. The advice from statisticians for scientists employing multimodel inference is to develop a well-thought-out set of candidate models for comparison, though precise instructions for how to do that are typically not given. A coherent body of knowledge, which falls under the general term causal analysis, now exists for examining the explanatory scientific content of candidate models. Much of the literature on causal analysis has been recently developed, and we suspect may not be familiar to many ecologists. This body of knowledge comprises a set of graphical tools and axiomatic principles to support scientists in their endeavors to create "well-formed hypotheses," as statisticians are asking them to do. Causal analysis is complementary to methods such as structural equation modeling, which provides the means for evaluation of proposed hypotheses against data. In this paper, we summarize and illustrate a set of principles that can guide scientists in their quest to develop explanatory hypotheses for evaluation. The principles presented in this paper have the capacity to close the communication gap between statisticians, who urge scientists to develop well-thought-out coherent models, and scientists, who would like some practical advice for exactly how to do that.


Assuntos
Modelos Estatísticos
3.
Ecol Evol ; 9(19): 11078-11088, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641456

RESUMO

Strategic conservation efforts for cryptic species, especially bats, are hindered by limited understanding of distribution and population trends. Integrating long-term encounter surveys with multi-season occupancy models provides a solution whereby inferences about changing occupancy probabilities and latent changes in abundance can be supported. When harnessed to a Bayesian inferential paradigm, this modeling framework offers flexibility for conservation programs that need to update prior model-based understanding about at-risk species with new data. This scenario is exemplified by a bat monitoring program in the Pacific Northwestern United States in which results from 8 years of surveys from 2003 to 2010 require updating with new data from 2016 to 2018. The new data were collected after the arrival of bat white-nose syndrome and expansion of wind power generation, stressors expected to cause population declines in at least two vulnerable species, little brown bat (Myotis lucifugus) and the hoary bat (Lasiurus cinereus). We used multi-season occupancy models with empirically informed prior distributions drawn from previous occupancy results (2003-2010) to assess evidence of contemporary decline in these two species. Empirically informed priors provided the bridge across the two monitoring periods and increased precision of parameter posterior distributions, but did not alter inferences relative to use of vague priors. We found evidence of region-wide summertime decline for the hoary bat ( λ ^  = 0.86 ± 0.10) since 2010, but no evidence of decline for the little brown bat ( λ ^  = 1.1 ± 0.10). White-nose syndrome was documented in the region in 2016 and may not yet have caused regional impact to the little brown bat. However, our discovery of hoary bat decline is consistent with the hypothesis that the longer duration and greater geographic extent of the wind energy stressor (collision and barotrauma) have impacted the species. These hypotheses can be evaluated and updated over time within our framework of pre-post impact monitoring and modeling. Our approach provides the foundation for a strategic evidence-based conservation system and contributes to a growing preponderance of evidence from multiple lines of inquiry that bat species are declining.

4.
Sci Total Environ ; 666: 1188-1197, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970484

RESUMO

In Grand Teton and Yellowstone national parks wetlands offer critical habitat and play a key role in supporting biological diversity. The shallow depths and small size of many palustrine wetlands in these protected areas and elsewhere make them vulnerable to changes in climate compared with larger and deeper aquatic habitats. Here, we use a simple water balance model to generate estimates of biophysical drivers of wetland change. We then examine the relationship between wetland inundation status and four principal drivers (i.e., temperature, precipitation, evapotranspiration, and runoff) spanning varying meteorological conditions over an 8-year time series from Grand Teton and Yellowstone national parks. We found that models containing snowmelt runoff outperformed models with other meteorological drivers and determined that a higher percentage of surveyed wetlands were dry in years characterized by lower runoff. Our work further shows that wetland drying was widespread across both parks, but sub-regional variations were best described at the hydrologic subbasin-level. Documenting the varying responses of wetlands to meteorological drivers is a necessary first step to identifying which subbasins are most sensitive to recent climatic change and contemplating how future change may alter the distribution of wetlands and their dependent taxa.


Assuntos
Neve , Movimentos da Água , Áreas Alagadas , Parques Recreativos , Transição de Fase , Wyoming
5.
Ecology ; 100(6): e02703, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30932179

RESUMO

Occupancy models are widely applied to estimate species distributions, but few methods exist for model checking. Thorough model assessments can uncover inadequacies and allow for deeper ecological insight by exploring structure in the observed data not accounted for by a model. We introduce occupancy model residual definitions that utilize the posterior distribution of the partially latent occupancy states. Residual-based assessments are valuable because they can target specific assumptions and identify ways to improve a model, such as adding spatial correlation or meaningful covariates. Our approach defines separate residuals for occupancy and detection, and we use simulation to examine whether missing structure for modeling detection probabilities can be distinguished from that for occupancy probabilities. In many scenarios, our residual diagnostics were able to separate inadequacies at the different model levels successfully, but we describe other situations when this may not be the case. Applying Moran's I residual diagnostics to assess models for silver-haired (Lasionycteris noctivagans) and little brown (Myotis lucifugus) bats only provided evidence of residual spatial correlation among detections. Targeting specific model assumptions using carefully chosen residual diagnostics is valuable for any analysis, and we remove previous barriers for occupancy analyses-lack of examples and practical advice.


Assuntos
Quirópteros , Animais
6.
Ecol Evol ; 8(12): 6144-6156, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29988432

RESUMO

Acoustic recording units (ARUs) enable geographically extensive surveys of sensitive and elusive species. However, a hidden cost of using ARU data for modeling species occupancy is that prohibitive amounts of human verification may be required to correct species identifications made from automated software. Bat acoustic studies exemplify this challenge because large volumes of echolocation calls could be recorded and automatically classified to species. The standard occupancy model requires aggregating verified recordings to construct confirmed detection/non-detection datasets. The multistep data processing workflow is not necessarily transparent nor consistent among studies. We share a workflow diagramming strategy that could provide coherency among practitioners. A false-positive occupancy model is explored that accounts for misclassification errors and enables potential reduction in the number of confirmed detections. Simulations informed by real data were used to evaluate how much confirmation effort could be reduced without sacrificing site occupancy and detection error estimator bias and precision. We found even under a 50% reduction in total confirmation effort, estimator properties were reasonable for our assumed survey design, species-specific parameter values, and desired precision. For transferability, a fully documented r package, OCacoustic, for implementing a false-positive occupancy model is provided. Practitioners can apply OCacoustic to optimize their own study design (required sample sizes, number of visits, and confirmation scenarios) for properly implementing a false-positive occupancy model with bat or other wildlife acoustic data. Additionally, our work highlights the importance of clearly defining research objectives and data processing strategies at the outset to align the study design with desired statistical inferences.

7.
Ecol Appl ; 28(6): 1616-1625, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802750

RESUMO

Statistical models supporting inferences about species occurrence patterns in relation to environmental gradients are fundamental to ecology and conservation biology. A common implicit assumption is that the sampling design is ignorable and does not need to be formally accounted for in analyses. The analyst assumes data are representative of the desired population and statistical modeling proceeds. However, if data sets from probability and non-probability surveys are combined or unequal selection probabilities are used, the design may be non-ignorable. We outline the use of pseudo-maximum likelihood estimation for site-occupancy models to account for such non-ignorable survey designs. This estimation method accounts for the survey design by properly weighting the pseudo-likelihood equation. In our empirical example, legacy and newer randomly selected locations were surveyed for bats to bridge a historic statewide effort with an ongoing nationwide program. We provide a worked example using bat acoustic detection/non-detection data and show how analysts can diagnose whether their design is ignorable. Using simulations we assessed whether our approach is viable for modeling data sets composed of sites contributed outside of a probability design. Pseudo-maximum likelihood estimates differed from the usual maximum likelihood occupancy estimates for some bat species. Using simulations we show the maximum likelihood estimator of species-environment relationships with non-ignorable sampling designs was biased, whereas the pseudo-likelihood estimator was design unbiased. However, in our simulation study the designs composed of a large proportion of legacy or non-probability sites resulted in estimation issues for standard errors. These issues were likely a result of highly variable weights confounded by small sample sizes (5% or 10% sampling intensity and four revisits). Aggregating data sets from multiple sources logically supports larger sample sizes and potentially increases spatial extents for statistical inferences. Our results suggest that ignoring the mechanism for how locations were selected for data collection (e.g., the sampling design) could result in erroneous model-based conclusions. Therefore, in order to ensure robust and defensible recommendations for evidence-based conservation decision-making, the survey design information in addition to the data themselves must be available for analysts. Details for constructing the weights used in estimation and code for implementation are provided.


Assuntos
Ecologia/métodos , Modelos Estatísticos , Animais , Quirópteros
8.
Ecol Evol ; 6(15): 5404-15, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27551392

RESUMO

Occupancy modeling is important for exploring species distribution patterns and for conservation monitoring. Within this framework, explicit attention is given to species detection probabilities estimated from replicate surveys to sample units. A central assumption is that replicate surveys are independent Bernoulli trials, but this assumption becomes untenable when ecologists serially deploy remote cameras and acoustic recording devices over days and weeks to survey rare and elusive animals. Proposed solutions involve modifying the detection-level component of the model (e.g., first-order Markov covariate). Evaluating whether a model sufficiently accounts for correlation is imperative, but clear guidance for practitioners is lacking. Currently, an omnibus goodness-of-fit test using a chi-square discrepancy measure on unique detection histories is available for occupancy models (MacKenzie and Bailey, Journal of Agricultural, Biological, and Environmental Statistics, 9, 2004, 300; hereafter, MacKenzie-Bailey test). We propose a join count summary measure adapted from spatial statistics to directly assess correlation after fitting a model. We motivate our work with a dataset of multinight bat call recordings from a pilot study for the North American Bat Monitoring Program. We found in simulations that our join count test was more reliable than the MacKenzie-Bailey test for detecting inadequacy of a model that assumed independence, particularly when serial correlation was low to moderate. A model that included a Markov-structured detection-level covariate produced unbiased occupancy estimates except in the presence of strong serial correlation and a revisit design consisting only of temporal replicates. When applied to two common bat species, our approach illustrates that sophisticated models do not guarantee adequate fit to real data, underscoring the importance of model assessment. Our join count test provides a widely applicable goodness-of-fit test and specifically evaluates occupancy model lack of fit related to correlation among detections within a sample unit. Our diagnostic tool is available for practitioners that serially deploy survey equipment as a way to achieve cost savings.

9.
Environ Monit Assess ; 186(7): 4081-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24549944

RESUMO

We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte-epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte-epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10 days), and the inclusion of multiple biological response and water-quality measures.


Assuntos
Monitoramento Ambiental/métodos , Fósforo/análise , Plantas/química , Rios/química , Bioensaio , Biomassa , Clorofila/análise , Clorofila A , Eutrofização , Idaho , Nitrogênio/análise
10.
Sci Total Environ ; 438: 72-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967495

RESUMO

One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.


Assuntos
Meio Ambiente , Poluentes Ambientais/análise , Inseticidas/análise , Modelos Teóricos , Controle de Mosquitos/métodos , Aerossóis , Teorema de Bayes , Poluentes Ambientais/administração & dosagem , Inseticidas/administração & dosagem , Análise de Regressão
11.
Ecol Appl ; 22(4): 1098-113, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22827121

RESUMO

Bats face unprecedented threats from habitat loss, climate change, disease, and wind power development, and populations of many species are in decline. A better ability to quantify bat population status and trend is urgently needed in order to develop effective conservation strategies. We used a Bayesian autoregressive approach to develop dynamic distribution models for Myotis lucifugus, the little brown bat, across a large portion of northwestern USA, using a four-year detection history matrix obtained from a regional monitoring program. This widespread and abundant species has experienced precipitous local population declines in northeastern USA resulting from the novel disease white-nose syndrome, and is facing likely range-wide declines. Our models were temporally dynamic and accounted for imperfect detection. Drawing on species-energy theory, we included measures of net primary productivity (NPP) and forest cover in models, predicting that M. lucifugus occurrence probabilities would covary positively along those gradients. Despite its common status, M. lucifugus was only detected during -50% of the surveys in occupied sample units. The overall naive estimate for the proportion of the study region occupied by the species was 0.69, but after accounting for imperfect detection, this increased to -0.90. Our models provide evidence of an association between NPP and forest cover and M. lucifugus distribution, with implications for the projected effects of accelerated climate change in the region, which include net aridification as snowpack and stream flows decline. Annual turnover, the probability that an occupied sample unit was a newly occupied one, was estimated to be low (-0.04-0.14), resulting in flat trend estimated with relatively high precision (SD = 0.04). We mapped the variation in predicted occurrence probabilities and corresponding prediction uncertainty along the productivity gradient. Our results provide a much needed baseline against which future anticipated declines in M. lucifugus occurrence can be measured. The dynamic distribution modeling approach has broad applicability to regional bat monitoring efforts now underway in several countries and we suggest ways to improve and expand our grid-based monitoring program to gain robust insights into bat population status and trend across large portions of North America.


Assuntos
Quirópteros/fisiologia , Modelos Biológicos , Animais , Monitoramento Ambiental , Oregon , Dinâmica Populacional , Washington
12.
PLoS One ; 6(12): e28635, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163047

RESUMO

Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity--a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.


Assuntos
Plantas/metabolismo , Áreas Alagadas , Algoritmos , Anisotropia , Teorema de Bayes , Canadá , Ecossistema , Modelos Estatísticos , Modelos Teóricos , Noroeste dos Estados Unidos , Estações do Ano , Fatores de Tempo
13.
Ecology ; 92(10): 1879-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22073778

RESUMO

Long-term monitoring programs emphasize power analysis as a tool to determine the sampling effort necessary to effectively document ecologically significant changes in ecosystems. Programs that monitor entire multispecies assemblages require a method for determining the power of multivariate statistical models to detect trend. We provide a method to simulate presence-absence species assemblage data that are consistent with increasing or decreasing directional change in species composition within multiple sites. This step is the foundation for using Monte Carlo methods to approximate the power of any multivariate method for detecting temporal trends. We focus on comparing the power of the Mantel test, permutational multivariate analysis of variance, and constrained analysis of principal coordinates. We find that the power of the various methods we investigate is sensitive to the number of species in the community, univariate species patterns, and the number of sites sampled over time. For increasing directional change scenarios, constrained analysis of principal coordinates was as or more powerful than permutational multivariate analysis of variance, the Mantel test was the least powerful. However, in our investigation of decreasing directional change, the Mantel test was typically as or more powerful than the other models.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Modelos Biológicos , Análise Multivariada , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...