Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 252, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352404

RESUMO

BACKGROUND: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules. RESULTS: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia. CONCLUSIONS: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose/fisiologia
2.
Plant Physiol ; 190(3): 1699-1714, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929094

RESUMO

The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1 that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.


Assuntos
Populus , Rhizobium , Populus/genética , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Organogênese Vegetal , Simbiose , Quitina/metabolismo , Citocininas , Raízes de Plantas/metabolismo
3.
iScience ; 25(2): 103754, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35146383

RESUMO

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming.

4.
Plant J ; 110(2): 513-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080285

RESUMO

Arbuscular mycorrhizal fungi help their host plant in the acquisition of nutrients, and this association is itself impacted by soil nutrient levels. High phosphorus levels inhibit the symbiosis, whereas high nitrogen levels enhance it. The genetic mechanisms regulating the symbiosis in response to soil nutrients are poorly understood. Here, we characterised the symbiotic phenotypes in four Medicago truncatula Tnt1-insertion mutants affected in arbuscular mycorrhizal colonisation. We located their Tnt1 insertions and identified alleles for two genes known to be involved in mycorrhization, RAM1 and KIN3. We compared the effects of the kin3-2 and ram1-4 mutations on gene expression, revealing that the two genes alter the expression of overlapping but not identical gene sets, suggesting that RAM1 acts upstream of KIN3. Additionally, KIN3 appears to be involved in the suppression of plant defences in response to the fungal symbiont. KIN3 is located on the endoplasmic reticulum of arbuscule-containing cortical cells, and kin3-2 mutants plants hosted significantly fewer arbuscules than the wild type. KIN3 plays an essential role in the symbiotic response to soil nitrogen levels, as, contrary to wild-type plants, the kin3-2 mutant did not exhibit increased root colonisation under high nitrogen.


Assuntos
Medicago truncatula , Micorrizas , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Solo , Simbiose/fisiologia
5.
Plant Physiol ; 188(1): 560-575, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34599592

RESUMO

Most legumes can establish a symbiotic association with soil rhizobia that trigger the development of root nodules. These nodules host the rhizobia and allow them to fix nitrogen efficiently. The perception of bacterial lipo-chitooligosaccharides (LCOs) in the epidermis initiates a signaling cascade that allows rhizobial intracellular infection in the root and de-differentiation and activation of cell division that gives rise to the nodule. Thus, nodule organogenesis and rhizobial infection need to be coupled in space and time for successful nodulation. The plant hormone cytokinin (CK) contributes to the coordination of this process, acting as an essential positive regulator of nodule organogenesis. However, the temporal regulation of tissue-specific CK signaling and biosynthesis in response to LCOs or Sinorhizobium meliloti inoculation in Medicago truncatula remains poorly understood. In this study, using a fluorescence-based CK sensor (pTCSn::nls:tGFP), we performed a high-resolution tissue-specific temporal characterization of the sequential activation of CK response during root infection and nodule development in M. truncatula after inoculation with S. meliloti. Loss-of-function mutants of the CK-biosynthetic gene ISOPENTENYLTRANSFERASE 3 (IPT3) showed impairment of nodulation, suggesting that IPT3 is required for nodule development in M. truncatula. Simultaneous live imaging of pIPT3::nls:tdTOMATO and the CK sensor showed that IPT3 induction in the pericycle at the base of nodule primordium contributes to CK biosynthesis, which in turn promotes expression of positive regulators of nodule organogenesis in M. truncatula.


Assuntos
Alquil e Aril Transferases/metabolismo , Citocininas/genética , Citocininas/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Organogênese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia
6.
Annu Rev Microbiol ; 75: 583-607, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623896

RESUMO

Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.


Assuntos
Micorrizas , Simbiose , Quitina/metabolismo , Micorrizas/metabolismo , Transdução de Sinais
7.
New Phytol ; 232(4): 1572-1581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482540

RESUMO

Arbuscular mycorrhizal fungi (AMF) are important contributors to both plant and soil health. Twenty-five years ago, researchers discovered 'glomalin', a soil component potentially produced by AMF, which was unconventionally extracted from soil and bound by a monoclonal antibody raised against Rhizophagus irregularis spores. 'Glomalin' can resist boiling, strong acids and bases, and protease treatment. Researchers proposed that 'glomalin' is a 60 kDa heat shock protein produced by AMF, while others suggested that it is a mixture of soil organic materials that are not unique to AMF. Despite disagreements on the nature of 'glomalin', it has been consistently associated with a long list of plant and soil health benefits, including soil aggregation, soil carbon storage and enhancing growth under abiotic stress. The benefits attributed to 'glomalin' have caused much excitement in the plant and soil health community; however, the mechanism(s) for these benefits have yet to be established. This review provides insights into the current understanding of the identity of 'glomalin', 'glomalin' quantification, and the associated benefits of 'glomalin'. We invite the community to think more critically about how glomalin-associated benefits are generated. We suggest a series of experiments to test hypotheses regarding the nature of 'glomalin' and associated health benefits.


Assuntos
Glomeromycota , Micorrizas , Proteínas Fúngicas , Fungos , Glicoproteínas
8.
BMC Biol ; 17(1): 99, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796086

RESUMO

Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops-rice, wheat, and maize-do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.


Assuntos
Fabaceae/microbiologia , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/fisiologia , Fabaceae/fisiologia , Simbiose
9.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416823

RESUMO

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Assuntos
Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Laccaria/metabolismo , Lipopolissacarídeos/metabolismo , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/química , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...