Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Yeast ; 28(2): 123-36, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20936606

RESUMO

A set of shuttle vectors was constructed to facilitate expression of genes for metabolic engineering in Saccharomyces cerevisiae. Selectable markers include the URA3, TRP1, MET15, LEU2-d8, HIS3 and CAN1 genes. Differential expression of genes can be achieved as each marker is available on both CEN/ARS- and 2 µ-containing plasmids. Unique restriction sites downstream of TEF1, PGK1 or HXT7-391 promoters and upstream of the CYC1 terminator allow insertion of open-reading frame cassettes for expression. Furthermore, a fragment appropriate for integration into the genome via homologous recombination can be readily generated in a polymerase chain reaction. Vector marker genes are flanked by loxP recognition sites for the CreA recombinase to allow efficient site-specific marker deletion and recycling. Expression and copy number were characterized for representative high- and low-copy vectors carrying the different marker and promoter sequences. Metabolic engineering typically requires the stable introduction of multiple genes and genomic integration is often preferred. This requires an expanded number of stable expression sites relative to standard gene expression studies. This study demonstrated the practicality of polymerase chain reaction amplification of an expression cassette and genetic marker, and subsequent replacement of endogenous retrotransposons by homologous recombination with flanking sequences. Such reporters were expressed comparably to those inserted at standard integration loci. This expands the number of available characterized integration sites and demonstrates that such sites provide a virtually inexhaustible pool of integration targets for stable expression of multiple genes. Together these vectors and expression loci will facilitate combinatorial gene expression for metabolic engineering.


Assuntos
Engenharia Genética/métodos , Vetores Genéticos , Genética Microbiana/métodos , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expressão Gênica , Plasmídeos , Recombinação Genética
2.
Mob DNA ; 1(1): 14, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20444245

RESUMO

BACKGROUND: The yeast retrotransposon Ty3 forms stable virus-like particles. Gag3, the major structural protein, is composed of capsid, spacer and nucleocapsid domains. The capsid domain of Gag3 was previously modeled as a structure similar to retrovirus capsid. FINDINGS: Two-hybrid analysis was used to understand the interactions that contribute to particle assembly. Gag3 interacted with itself as predicted based on its role as the major structural protein. The N-terminal subdomain (NTD) of the capsid was able to interact with itself and with the C-terminal subdomain (CTD) of the capsid, but interacted less well with intact Gag3. Mutations previously shown to block particle assembly disrupted Gag3 interactions more than subdomain interactions. CONCLUSIONS: The findings that the NTD interacts with itself and with the CTD are consistent with previous modeling and a role similar to that of the capsid in retrovirus particle structure. These results are consistent with a model in which the Gag3-Gag3 interactions that initiate assembly differ from the subdomain interactions that potentially underlie particle stability.

3.
Genome Res ; 15(5): 641-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15837808

RESUMO

A collection of 4457 Saccharomyces cerevisiae mutants deleted for nonessential genes was screened for mutants with increased or decreased mobilization of the gypsylike retroelement Ty3. Of these, 64 exhibited increased and 66 decreased Ty3 transposition compared with the parental strain. Genes identified in this screen were grouped according to function by using GOnet software developed as part of this study. Gene clusters were related to chromatin and transcript elongation, translation and cytoplasmic RNA processing, vesicular trafficking, nuclear transport, and DNA maintenance. Sixty-six of the mutants were tested for Ty3 proteins and cDNA. Ty3 cDNA and transposition were increased in mutants affected in nuclear pore biogenesis and in a subset of mutants lacking proteins that interact physically or genetically with a replication clamp loader. Our results suggest that nuclear entry is linked mechanistically to Ty3 cDNA synthesis but that host replication factors antagonize Ty3 replication. Some of the factors we identified have been previously shown to affect Ty1 transposition and others to affect retroviral budding. Host factors, such as these, shared by distantly related Ty retroelements and retroviruses are novel candidates for antiviral targets.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Fatores Hospedeiros de Integração/genética , Mutação/genética , Retroelementos/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Southern Blotting , Cromatina/genética , Biologia Computacional/métodos , Análise Mutacional de DNA , DNA Complementar/genética , Poro Nuclear/genética , Poro Nuclear/metabolismo , Transcrição Gênica/genética
4.
Genetics ; 168(3): 1159-76, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15579677

RESUMO

The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNA(Val(AAC)) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets.


Assuntos
Recombinação Genética/fisiologia , Retroelementos , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , DNA Complementar , Mutação , RNA de Transferência de Valina/genética , DNA Polimerase Dirigida por RNA/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA