Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(5): e0155615, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27224453

RESUMO

Collection of scat samples is common in wildlife research, particularly for genetic capture-mark-recapture applications. Due to high degradation rates of genetic material in scat, large numbers of samples must be collected to generate robust estimates. Optimization of sampling approaches to account for taxa-specific patterns of scat deposition is, therefore, necessary to ensure sufficient sample collection. While scat collection methods have been widely studied in carnivores, research to maximize scat collection and noninvasive sampling efficiency for social ungulates is lacking. Further, environmental factors or scat morphology may influence detection of scat by observers. We contrasted performance of novel radial search protocols with existing adaptive cluster sampling protocols to quantify differences in observed amounts of wild pig (Sus scrofa) scat. We also evaluated the effects of environmental (percentage of vegetative ground cover and occurrence of rain immediately prior to sampling) and scat characteristics (fecal pellet size and number) on the detectability of scat by observers. We found that 15- and 20-m radial search protocols resulted in greater numbers of scats encountered than the previously used adaptive cluster sampling approach across habitat types, and that fecal pellet size, number of fecal pellets, percent vegetative ground cover, and recent rain events were significant predictors of scat detection. Our results suggest that use of a fixed-width radial search protocol may increase the number of scats detected for wild pigs, or other social ungulates, allowing more robust estimation of population metrics using noninvasive genetic sampling methods. Further, as fecal pellet size affected scat detection, juvenile or smaller-sized animals may be less detectable than adult or large animals, which could introduce bias into abundance estimates. Knowledge of relationships between environmental variables and scat detection may allow researchers to optimize sampling protocols to maximize utility of noninvasive sampling for wild pigs and other social ungulates.


Assuntos
Fezes , Manejo de Espécimes/métodos , Sus scrofa/genética , Animais , Feminino , Masculino
2.
J Wildl Dis ; 51(3): 609-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984774

RESUMO

Intracranial abscess disease is a cause of natural mortality for mature male white-tailed deer (Odocoileus virginianus). Most cases of abscesses are associated with bacterial infection by Trueperella (Arcanobacterium) pyogenes, but a complete understanding of the epidemiology of this disease is lacking. We quantified the effects of individual characteristics, site-specific herd demographics, land cover, and soil variables in estimating the probability of this disease. We examined 7,545 white-tailed deer from 60 sites throughout Georgia US for signs of cranial abscesses, the predecessor of intracranial abscesses, and recorded the presence or absence of cranial abscesses for each individual examined. We detected no cranial abscesses in 2,562 female deer but 91 abscesses in 4,983 male deer examined (1.8%). A generalized linear mixed model, treating site as a random effect, was used to examine several potential explanatory risk factors including site-level landscape and soil characteristics (soil and forest type), demographic factors (deer density and male to female ratio), and individual host factors (deer sex and age). Model results indicated that the probability of a male having a cranial abscess increased with age and that adult sex ratio (male:female) was positively associated with this disease. Site-specific variables for land cover and soil types were not strongly associated with observations of the disease at the scale measured and a large amount of among-site variability remained. Given the demonstrated effect of age, gender, and local sex ratios but the remaining unexplained spatial variability, additional investigation into spatiotemporal variation of the presumed bacterial causative agent of cranial abscesses appears warranted.


Assuntos
Abscesso/veterinária , Cervos/microbiologia , Crânio , Abscesso/epidemiologia , Abscesso/microbiologia , Fatores Etários , Animais , Animais Selvagens/microbiologia , Feminino , Georgia/epidemiologia , Masculino , Prevalência , Fatores de Risco , Fatores Sexuais
3.
Environ Manage ; 54(3): 641-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25028183

RESUMO

Forests are socioeconomically and ecologically important ecosystems that are exposed to a variety of natural and anthropogenic stressors. As such, monitoring forest condition and detecting temporal changes therein remain critical to sound public and private forestland management. The National Parks Service's Vital Signs monitoring program collects information on many forest health indicators, including species richness, cover by exotics, browse pressure, and forest regeneration. We applied a mixed-model approach to partition variability in data for 30 forest health indicators collected from several national parks in the eastern United States. We then used the estimated variance components in a simulation model to evaluate trend detection capabilities for each indicator. We investigated the extent to which the following factors affected ability to detect trends: (a) sample design: using simple panel versus connected panel design, (b) effect size: increasing trend magnitude, (c) sample size: varying the number of plots sampled each year, and (d) stratified sampling: post-stratifying plots into vegetation domains. Statistical power varied among indicators; however, indicators that measured the proportion of a total yielded higher power when compared to indicators that measured absolute or average values. In addition, the total variability for an indicator appeared to influence power to detect temporal trends more than how total variance was partitioned among spatial and temporal sources. Based on these analyses and the monitoring objectives of the Vital Signs program, the current sampling design is likely overly intensive for detecting a 5 % trend·year(-1) for all indicators and is appropriate for detecting a 1 % trend·year(-1) in most indicators.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Árvores , Ecossistema , Modelos Estatísticos , Projetos de Pesquisa , Estados Unidos
4.
Ecol Appl ; 16(4): 1487-501, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937813

RESUMO

Four decades of observations on the limnology and fishes of Oneida Lake, New York, USA, provided an opportunity to investigate causes of mortality during winter, a period of resource scarcity for most juvenile fishes, in age-0 yellow perch (Perca flavescens) and age-0 white perch (Morone americana). This time series contains several environmental (e.g., winter severity) and biological (e.g., predator abundance) signals that can be used to disentangle multiple effects on overwinter mortality of these fishes. A multiple regression analysis indicated that age-0 yellow perch winter mortality was inversely related to fish length in autumn and to the abundance of alternative prey (gizzard shad [Dorosoma cepedianum] and white perch). However, no length-selective predation of yellow perch by one of the main predators, adult walleye (Sander vitreus), was detected. In contrast, white perch mortality was directly associated with total predator biomass and abundance of white perch in autumn, and inversely related to yellow perch abundance as a potential buffer species, but not to the abundance of gizzard shad. Winter severity was not a significant predictor of mortality for either perch species. Predicted winter starvation mortality, from a model described in the literature, was much lower than observed mortality for yellow perch. Similar models for white perch were correlated with observed mortality. These results collectively suggest that predation is the main mechanism shaping winter mortality of yellow perch, while both predation and starvation may be important for white perch. This analysis also revealed that gizzard shad buffer winter mortality of yellow perch. Although winter duration determines the northern limit of fish distributions, in mid-latitude Oneida Lake and for these species, predator-prey interactions seem to exert a greater influence on winter mortality than starvation.


Assuntos
Envelhecimento/fisiologia , Ecossistema , Peixes/fisiologia , Mortalidade , Estações do Ano , Animais , Dieta , Água Doce , New York , Dinâmica Populacional , Comportamento Predatório/fisiologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...