Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 77(3): 1049-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148699

RESUMO

Understanding factors that influence persistence of influenza virus in an environment without host animals is critical to appropriate decision-making for issues such as quarantine downtimes, setback distances, and eradication programs in livestock production systems. This systematic review identifies literature describing persistence of influenza virus in environmental samples, i.e., air, water, soil, feces, and fomites. An electronic search of PubMed, CAB, AGRICOLA, Biosis, and Compendex was performed, and citation relevance was determined according to the aim of the review. Quality assessment of relevant studies was performed using criteria from experts in virology, disease ecology, and environmental science. A total of 9,760 abstracts were evaluated, and 40 appeared to report the persistence of influenza virus in environmental samples. Evaluation of full texts revealed that 19 of the 40 studies were suitable for review, as they described virus concentration measured at multiple sampling times, with viruses detectable at least twice. Seven studies reported persistence in air (six published before 1970), seven in water (five published after 1990), two in feces, and three on surfaces. All three fomite and five air studies addressed human influenza virus, and all water and feces studies pertained to avian influenza virus. Outcome measurements were transformed to half-lives, and resultant multivariate mixed linear regression models identified influenza virus surviving longer in water than in air. Temperature was a significant predictor of persistence over all matrices. Salinity and pH were significant predictors of persistence in water conditions. An assessment of the methodological quality review of the included studies revealed significant gaps in reporting critical aspects of study design.


Assuntos
Microbiologia do Ar , Monitoramento Ambiental/métodos , Orthomyxoviridae/crescimento & desenvolvimento , Microbiologia do Solo , Microbiologia da Água , Animais , Fezes/virologia , Fômites/virologia , Humanos , Orthomyxoviridae/isolamento & purificação
2.
Clin Vaccine Immunol ; 17(10): 1605-11, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20719987

RESUMO

The aim of this study was to characterize Erysipelothrix sp. isolates from clinically affected pigs and their environment and compare them to the Erysipelothrix sp. vaccines used at the sites. Samples were collected during swine erysipelas outbreaks in vaccinated pigs in six Midwest United States swine operations from 2007 to 2009. Pig tissue samples were collected from 1 to 3 pigs from each site. Environmental samples (manure, feed, central-line water, oral fluids, and swabs collected from walls, feed lines, air inlets, exhaust fans, and nipple drinkers) and live vaccine samples were collected following the isolation of Erysipelothrix spp. from clinically affected pigs. All Erysipelothrix sp. isolates obtained were further characterized by serotyping. Selected isolates were further characterized by PCR assays for genotype (E. rhusiopathiae, E. tonsillarum, Erysipelothrix sp. strain 1, and Erysipelothrix sp. strain 2) and surface protective antigen (spa) type (A, B1, B2, and C). All 26 isolates obtained from affected pigs were E. rhusiopathiae, specifically, serotypes 1a, 1b, 2, and 21. From environmental samples, 56 isolates were obtained and 52/56 were E. rhusiopathiae (serotypes 1a, 1b, 2, 6, 9, 12, and 21), 3/56 were Erysipelothrix sp. strain 1 (serotypes 13 and untypeable), and one was a novel species designated Erysipelothrix sp. strain 3 (serotype untypeable). Four of six vaccines used at the sites were commercially available products and contained live E. rhusiopathiae serotype 1a. Of the remaining two vaccines, one was an autogenous live vaccine and contained live E. rhusiopathiae serotype 2 and one was a commercially produced inactivated vaccine and was described by the manufacturer to contain serotype 2 antigen. All E. rhusiopathiae isolates were positive for spaA. All Erysipelothrix sp. strain 1 isolates and the novel Erysipelothrix sp. strain 3 isolate were negative for all currently known spa types (A, B1, B2, and C). These results indicate that Erysipelothrix spp. can be isolated from the environment of clinically affected pigs; however, the identified serotypes in pigs differ from those in the environment at the selected sites. At one of the six affected sites, the vaccine strain and the isolates from clinically affected pigs were of homologous serotype; however, vaccinal and clinical isolates were of heterologous serotype at the remaining five sites, suggesting that reevaluation of vaccine efficacy using recent field strains may be warranted.


Assuntos
Vacinas Bacterianas/imunologia , Surtos de Doenças , Microbiologia Ambiental , Erysipelothrix/classificação , Erysipelothrix/imunologia , Erisipela Suína/epidemiologia , Erisipela Suína/microbiologia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Erysipelothrix/genética , Erysipelothrix/isolamento & purificação , Meio-Oeste dos Estados Unidos/epidemiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sorotipagem , Suínos , Erisipela Suína/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...