Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(18): 7937-7946, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669108

RESUMO

Emissions of biogenic reactive carbon significantly influence atmospheric chemistry, contributing to the formation and destruction of secondary pollutants, such as secondary organic aerosol and ozone. While isoprene and monoterpenes are a major fraction of emissions and have been extensively studied, substantially less is known about the atmospheric impacts of higher-molecular-weight terpenes such as sesquiterpenes. In particular, sesquiterpenes have been proposed to play a significant role in ozone chemical loss due to the very high ozone reaction rates of certain isomers. However, relatively little data are available on the isomer-resolved composition of this compound class or its role in ozone chemistry. This study examines the chemical diversity of sesquiterpenes and availability of ozone reaction rate constants to evaluate the current understanding of their ozone reactivity. Sesquiterpenes are found to be highly diverse, with 72 different isomers reported and relatively few isomers that contribute a large mass fraction across all studies. For the small number of isomers with known ozone reaction rates, estimated rates may be 25 times higher or lower than measurements, indicating that estimated reaction rates are highly uncertain. Isomers with known ozone reaction rates make up approximately half of the mass of sesquiterpenes in concentration and emission measurements. Consequently, the current state of the knowledge suggests that the total ozone reactivity of sesquiterpenes cannot be quantified without very high uncertainty, even if isomer-resolved composition is known. These results are in contrast to monoterpenes, which are less diverse and for which ozone reaction rates are well-known, and in contrast to hydroxyl reactivity of monoterpenes and sesquiterpenes, for which reaction rates can be reasonably well estimated. Improved measurements of a relatively small number of sesquiterpene isomers would reduce uncertainties and improve our understanding of their role in regional and global ozone chemistry.


Assuntos
Atmosfera , Ozônio , Sesquiterpenos , Ozônio/química , Sesquiterpenos/química , Atmosfera/química , Poluentes Atmosféricos/química , Isomerismo
2.
Environ Sci Technol ; 58(11): 4926-4936, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452107

RESUMO

This study introduces a novel surface-enhanced Raman spectroscopy (SERS)-based lateral flow test (LFT) dipstick that integrates digital analysis for highly sensitive and rapid viral quantification. The SERS-LFT dipsticks, incorporating gold-silver core-shell nanoparticle probes, enable pixel-based digital analysis of large-area SERS scans. Such an approach enables ultralow-level detection of viruses that readily distinguishes positive signals from background noise at the pixel level. The developed digital SERS-LFTs demonstrate limits of detection (LODs) of 180 fg for SARS-CoV-2 spike protein, 120 fg for nucleocapsid protein, and 7 plaque forming units for intact virus, all within <30 min. Importantly, digital SERS-LFT methods maintain their robustness and their LODs in the presence of indoor dust, thus underscoring their potential for accurate and reliable virus diagnosis and quantification in real-world environmental settings.


Assuntos
Nanopartículas Metálicas , Glicoproteína da Espícula de Coronavírus , Vírus , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química
3.
Environ Sci Technol ; 57(15): 6263-6272, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011031

RESUMO

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, ∼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only ∼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Poeira/análise
4.
Environ Sci Technol ; 55(23): 15672-15679, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784200

RESUMO

Volatile chemical products (VCPs) account for increasing fractions of organic carbon emitted to the atmosphere, particularly in urban areas. Fragrances are potentially reactive components that are added to many VCPs. To better constrain these emissions, 11 commercially available liquid fragrance mixtures were characterized for their composition and their evaporation modeled. Emissions of mass, hydroxyl reactivity, and ozone reactivity were estimated by modeling under four different scenarios. Fragrance compounds were generally less than one-half the mass of fragrance mixtures, with the balance comprised of solvents and plasticizers and unresolved mass thought to be dominated by plasticizers. The results showed that terpenes and terpenoids account for nearly all of the emitted mass and reactivity while only comprising ∼10% w/w on average of the liquid fragrance mixtures. Most of the reactivity is emitted within hours, with ozone reactivity evolving more rapidly than OH reactivity and comprised almost entirely of terpenes. Limonene, a common fragrance constituent, dominates the reactivity of emitted carbon. Generally, 20-40% of the potential hydroxyl reactivity contained in the fragrance mixture does not evaporate on time scales sufficient to have an impact on local or regional air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Radical Hidroxila , Odorantes , Ozônio/análise , Compostos Orgânicos Voláteis/análise
5.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341119

RESUMO

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.


Assuntos
Poluentes Atmosféricos/análise , Ozônio , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Modelos Teóricos , Monoterpenos/análise , Cidade de Nova Iorque , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Odorantes/análise , Densidade Demográfica , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/química
6.
J Hazard Mater ; 413: 125372, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930950

RESUMO

Underground storage tanks containing petroleum or other hazardous substances are used widely for residential storage of home heating oil. Spills and leaks of fuel from these tanks are common, and resulting subsurface petroleum vapors may pose health risks. However, understanding of this risk is limited by a lack of observational data on the chemical composition of vapors from discharged fuel. We present here the composition of soil gas sampled at 66 remediated residential sites of underground heating oil discharges throughout Virginia using a newly developed data analysis technique that allows characterization of hydrocarbons by carbon number and degree of unsaturation. Measured concentrations of total petroleum hydrocarbons exceeded 100,000 µg/m3 at 12 sites, but its composition varied widely between sites. Concentrations of hydrocarbons from chemical classes differing by more than a few carbon numbers or degrees of unsaturation are found to be poorly correlated. Furthermore, differences in composition are poorly described by metrics expected to indicate subsurface weathering (e.g., discharge year, or ratio of n-heptadecane to pristane). These results suggest that the composition and magnitude of residual contamination at remediated subsurface discharges is driven by rarely documented spill characteristics (e.g., age and composition of source material, discharge rate, etc.).

7.
Environ Sci Technol ; 54(23): 14923-14935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205951

RESUMO

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.8 µgCsm-3) than in Centreville (36.5 µgCsm-3). However, the OH reactivity (OHR) measured at these sites is similar (20.1 and 19.3 s-1). The shortfall in OHR when summing up measured contributions is 31%, at Pasadena and 14% at Centreville, suggesting that there may be a larger reservoir of unmeasured ROC at the former site. Estimated O3 production and SOA potential (defined as concentration × yield) are both higher during CalNex than SOAS. This analysis suggests that the ROC in urban California is less reactive, but due to higher concentrations of oxides of nitrogen and hydroxyl radicals, is more efficient in terms of O3 and SOA production, than in the forested southeastern U.S.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , California , Carbono , Ozônio/análise , Sudeste dos Estados Unidos
8.
Anal Chem ; 92(18): 12481-12488, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786433

RESUMO

Complex mixtures of hydrocarbons are ubiquitous as petroleum fuels and, consequently, environmental contaminants. Because they contain thousands of individual components with similar molecular structures, detailed chemical characterization of hydrocarbon mixtures relies on advanced analytical techniques that are not accessible to many researchers. Many analyses of hydrocarbon mixtures instead characterize them as "unresolved complex mixtures", with quantification limited to a small number of resolvable components and/or total observed mass within specified volatility ranges. This work develops a new analytical approach to characterize the hydrocarbon component of petroleum and environmental mixtures by "hydrocarbon group" (defined by carbon number, degree of unsaturation and, in certain cases, degree of branching) using gas chromatography coupled to a unit-mass-resolution electron ionization quadrupole mass spectrometer (GC/EI-MS), a standard and widely available instrument. Average mass spectra of hydrocarbons from a widely used spectral library are combined with chromatographic signal representing the molecular ion of each hydrocarbon group to recreate the magnitude and mass spectra of the chromatogram. Characterization of hydrocarbons in diesel fuel by this approach is in good agreement with state-of-the-art techniques relying on high-resolution and fast-response mass spectrometers. Application of this approach to subsurface soil gas samples from remediated sites of underground storage tank spills demonstrates that composition of hydrocarbons in environmental samples varies significantly and that the total signal of samples from contaminated sites may contain a substantial fraction of oxygenated components.

9.
Environ Sci Technol ; 54(10): 5980-5991, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32271021

RESUMO

Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 µg m-3 reduction in sulfate corresponds with at least ∼0.5 µg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.


Assuntos
Poluentes Atmosféricos , Hemiterpenos , Aerossóis/análise , Brasil , Butadienos , Pentanos , Sudeste dos Estados Unidos
10.
Nat Commun ; 10(1): 1046, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837467

RESUMO

One of the least understood aspects in atmospheric chemistry is how urban emissions influence the formation of natural organic aerosols, which affect Earth's energy budget. The Amazon rainforest, during its wet season, is one of the few remaining places on Earth where atmospheric chemistry transitions between preindustrial and urban-influenced conditions. Here, we integrate insights from several laboratory measurements and simulate the formation of secondary organic aerosols (SOA) in the Amazon using a high-resolution chemical transport model. Simulations show that emissions of nitrogen-oxides from Manaus, a city of ~2 million people, greatly enhance production of biogenic SOA by 60-200% on average with peak enhancements of 400%, through the increased oxidation of gas-phase organic carbon emitted by the forests. Simulated enhancements agree with aircraft measurements, and are much larger than those reported over other locations. The implication is that increasing anthropogenic emissions in the future might substantially enhance biogenic SOA in pristine locations like the Amazon.

11.
Indoor Air ; 29(1): 17-29, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387208

RESUMO

Emission, transport, and fate of semi-volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited. To overcome this gap, we propose a mass transfer model accounting for adsorption, condensation, and absorption of multiple gas-phase SVOCs on impervious, vertical indoor surfaces. Further model development and experimental research are needed including more realistic scenarios accounting for surface heterogeneity, non-ideal organic mixtures, and particle deposition.


Assuntos
Poluição do Ar em Ambientes Fechados , Modelos Químicos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Absorção Fisico-Química , Adsorção , Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados/análise , Humanos , Compostos Orgânicos Voláteis/análise
12.
Environ Sci Process Impacts ; 20(11): 1546-1558, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30357193

RESUMO

Organosulfates are formed in the atmosphere from reactions between reactive organic compounds (such as oxidation products of isoprene) and acidic sulfate aerosol. Here we investigated speciated organosulfates in an area typically downwind of the city of Manaus situated in the Amazon forest in Brazil during "GoAmazon2014/5" in both the wet season (February-March) and dry season (August-October). We observe products consistent with the reaction of isoprene photooxidation products and sulfate aerosols, leading to formation of several types of isoprene-derived organosulfates, which contribute 3% up to 42% of total sulfate aerosol measured by aerosol mass spectrometry. During the wet season the average contribution of summed organic sulfate concentrations to total sulfate was 19 ± 10% and similarly during the dry season the contribution was 19 ± 8%. This is the highest fraction of speciated organic sulfate to total sulfate observed at any reported site. Organosulfates appeared to be dominantly formed from isoprene epoxydiols (IEPOX), averaging 104 ± 73 ng m-3 (range 15-328 ng m-3) during the wet season, with much higher abundance 610 ± 400 ng m-3 (range 86-1962 ng m-3) during the dry season. The concentration of isoprene-derived organic sulfate correlated with total inorganic sulfate (R2 = 0.35 and 0.51 during the wet and dry seasons, respectively), implying the significant influence of inorganic sulfate aerosol for the heterogeneous reactive uptake of IEPOX. Organosulfates also contributed to organic matter in aerosols (3.5 ± 1.9% during the wet season and 5.1 ± 2.5% during the dry season). The present study shows that an important fraction of sulfate in aerosols in the Amazon downwind of Manaus consists of multifunctional organic chemicals formed in the atmosphere, and that increased SO2 emissions would substantially increase SOA formation from isoprene.


Assuntos
Aerossóis/química , Atmosfera/química , Compostos Orgânicos/análise , Sulfatos/análise , Aerossóis/análise , Brasil , Butadienos , Cidades , Monitoramento Ambiental , Hemiterpenos , Espectrometria de Massas , Compostos Orgânicos/química , Oxirredução , Sulfatos/química , Vento
13.
Atmos Chem Phys ; 18(1): 357-370, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963078

RESUMO

Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, RN/2S ≈ 0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NH x ) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+]air (H+ in µgm-3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C≥0.6) compounds including several isoprene-derived tracers as well as levoglu-cosan but decrease particle-phase partitioning for low O: C, monoterpene-derived species.

14.
Nat Chem ; 10(4): 462-468, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483638

RESUMO

The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.

15.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
16.
Science ; 359(6377): 760-764, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29449485

RESUMO

A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental , Hidrocarbonetos/efeitos adversos , Compostos Orgânicos Voláteis/efeitos adversos , Poluentes Atmosféricos/análise , Ácido Dioctil Sulfossuccínico , Humanos , Hidrocarbonetos/análise , Estados Unidos , Compostos Orgânicos Voláteis/análise
17.
Atmos Chem Phys ; 18(14): 10433-10457, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33354203

RESUMO

Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate-volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12 h time resolution and performed hourly in situ measurements with a semi-volatile thermal desorption aerosol gas chromatograph (SV-TAG) at a rural site ("T3") located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate-volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and 4 diterpenes with mean concentrations in the range 0.01-6.04 ngm-3 (1-670ppqv). We estimate that sesquiterpenes contribute approximately 14 and 12% to the total reactive loss of O3 via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~ 50-70 % for within-canopy reactive O3 loss attributed to the ozonolysis of highly reactive sesquiterpenes (e.g., ß-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from ß-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 0.4-5 % (median 1 %) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm that more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.

18.
J Chromatogr A ; 1529: 81-92, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29126588

RESUMO

Chromatography provides important detail on the composition of environmental samples and their chemical processing. However, the complexity of these samples and their tendency to contain many structurally and chemically similar compounds frequently results in convoluted or poorly resolved data. Data reduction from raw chromatograms of complex environmental data into integrated peak areas consequently often requires substantial operator interaction. This difficulty has led to a bottleneck in analysis that increases analysis time, decreases data quality, and will worsen as advances in field-based instrumentation multiply the quantity and informational density of data produced. In this work, we develop and validate an automated approach to fitting chromatographic data within a target retention time window with a combination of multiple idealized peaks (Gaussian peaks either with or without an exponential decay component). We compare this single-ion peak fitting approach to drawn baseline integration methods of more than 70,000 peaks collected by field-based chromatographs spanning across a wide range of volatilities and functionalities. Accuracy of peak fitting under real-world conditions is found to be within 10%. The quantitative parameters describing the fit (e.g. coefficients, fit residuals, etc.) are found to provide valuable information to increase the efficiency of quality control and provide constraints to accurately integrate peaks that are significantly convoluted with neighboring peaks. Implementation of the peak fitting method is shown to yield accurate integration of peaks otherwise too poorly resolved to separate into individual compounds and improved quantitative metrics to determine the fidelity of the data reduction process, while substantially decreasing the time spent by operators on data reduction.


Assuntos
Cromatografia , Estatística como Assunto/métodos , Reprodutibilidade dos Testes , Estatística como Assunto/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...