Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 90, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245032

RESUMO

BACKGROUND: Rice (Oryza sativa) straw is a common waste product that represents a considerable amount of bound energy. This energy can be used for biogas production, but the rate and level of methane produced from rice straw is still low. To investigate the potential for an increased biogas production from rice straw, we have here utilized WRINKLED1 (WRI1), a plant AP2/ERF transcription factor, to increase triacylglycerol (TAG) biosynthesis in rice plants. Two forms of Arabidopsis thaliana WRI1 were evaluated by transient expression and stable transformation of rice plants, and transgenic plants were analyzed both for TAG levels and biogas production from straw. RESULTS: Both full-length AtWRI1, and a truncated form lacking the initial 141 amino acids (including the N-terminal AP2 domain), increased fatty acid and TAG levels in vegetative and reproductive tissues of Indica rice. The stimulatory effect of the truncated AtWRI1 was significantly lower than that of the full-length protein, suggesting a role for the deleted AP2 domain in WRI1 activity. Full-length AtWRI1 increased TAG levels also in Japonica rice, indicating a conserved effect of WRI1 in rice lipid biosynthesis. The bio-methane production from rice straw was 20% higher in transformants than in the wild type. Moreover, a higher producing rate and final yield of methane was obtained for rice straw compared with rice husks, suggesting positive links between methane production and a high amount of fatty acids. CONCLUSIONS: Our results suggest that heterologous WRI1 expression in transgenic plants can be used to improve the metabolic potential for bioenergy purposes, in particular methane production.

2.
Microb Biotechnol ; 16(2): 350-371, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507711

RESUMO

Cattle manure has a low energy content and high fibre and water content, limiting its value for biogas production. Co-digestion with a more energy-dense material can improve the output, but the co-substrate composition that gives the best results in terms of degree of degradation, gas production and digestate quality has not yet been identified. This study examined the effects of carbohydrate, protein and fat as co-substrates for biogas production from cattle manure. Laboratory-scale semi-continuous mesophilic reactors were operated with manure in mono-digestion or in co-digestion with egg albumin, rapeseed oil, potato starch or a mixture of these, and chemical and microbiological parameters were analysed. The results showed increased gas yield for all co-digestion reactors, but only the reactor supplemented with rapeseed oil showed synergistic effects on methane yield. The reactor receiving potato starch indicated improved fibre degradation, suggesting a priming effect by the easily accessible carbon. Both these reactors showed increased species richness and enrichment of key microbial species, such as fat-degrading Syntrophomonadaceae and families known to include cellulolytic bacteria. The addition of albumin promoted enrichment of known ammonia-tolerant syntrophic acetate- and potential propionate-degrading bacteria, but still caused slight process inhibition and less efficient overall degradation of organic matter in general, and of cellulose in particular.


Assuntos
Biocombustíveis , Esterco , Bovinos , Animais , Esterco/microbiologia , Biocombustíveis/análise , Óleo de Brassica napus , Anaerobiose , Acetatos , Bactérias/metabolismo , Metano/metabolismo , Reatores Biológicos
3.
Life Sci Alliance ; 5(12)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229063

RESUMO

Aquaporins are protein channels embedded in the lipid bilayer in cells from all organisms on earth that are crucial for water homeostasis. In fish, aquaporins are believed to be important for osmoregulation; however, the molecular mechanism behind this is poorly understood. Here, we present the first structural and functional characterization of a fish aquaporin; cpAQP1aa from the fresh water fish climbing perch (<i>Anabas testudineus</i>), a species that is of high osmoregulatory interest because of its ability to spend time in seawater and on land. These studies show that cpAQP1aa is a water-specific aquaporin with a unique fold on the extracellular side that results in a constriction region. Functional analysis combined with molecular dynamic simulations suggests that phosphorylation at two sites causes structural perturbations in this region that may have implications for channel gating from the extracellular side.


Assuntos
Aquaporinas , Bicamadas Lipídicas , Animais , Aquaporinas/química , Aquaporinas/metabolismo , Água Doce , Água do Mar , Água/metabolismo
4.
Sci Total Environ ; 817: 152967, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016947

RESUMO

This study aims to elucidate the role of sulfide and its precursors in anaerobic digestion (i.e., cysteine, representing sulfur-containing amino acids, and sulfate) on microbial oleate conversion to methane. Serine, with a similar structure to cysteine but with a hydroxyl group instead of a thiol, was included as a control to assess potential effects on methane formation that were not related to sulfur functionalities. The results showed that copresence of sulfide and oleate in anaerobic batch assays accelerated the methane formation compared to assays with only oleate and mitigated negative effect on methane formation caused by increased sulfide level. Nuclear magnetic resonance spectroscopy of sulfide-exposed oleate suggested that sulfide reaction with oleate double bonds likely contributed to negation of the negative effect on the methanogenic activity. Methane formation from oleate was also accelerated in the presence of cysteine or serine, while sulfate decreased the cumulative methane formation from oleate. Neither cysteine nor serine was converted to methane, and their accelerating effects was associated to different mechanisms due to establishment of microbial communities with different structures, as evidenced by high-throughput sequencing of 16S rRNA gene. These outcomes contribute with new knowledge to develop strategies for optimum use of sulfur- and lipid-rich wastes in anaerobic digestion processes.


Assuntos
Metano , Ácido Oleico , Anaerobiose , Reatores Biológicos , Cisteína/metabolismo , Ácidos Graxos/metabolismo , Metano/metabolismo , Ácido Oleico/metabolismo , RNA Ribossômico 16S , Serina/metabolismo , Sulfatos , Sulfetos
5.
Angew Chem Int Ed Engl ; 60(4): 2069-2073, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-32926534

RESUMO

There is an urgent demand for analytic approaches that enable precise and representative quantification of the transport of biologically active compounds across cellular membranes. In this study, we established a new means to monitor membrane permeation kinetics, using total internal reflection fluorescence microscopy confined to a ≈500 nm thick mesoporous silica substrate, positioned underneath a planar supported cell membrane mimic. This way, we demonstrate spatiotemporally resolved membrane permeation kinetics of a small-molecule model drug, felodipine, while simultaneously controlling the integrity of, and monitoring the drug binding to, the cell membrane mimic. By contrasting the permeation behaviour of pure felodipine with felodipine coupled to the permeability enhancer caprylate (C8), we provide evidence for C8-facilitated transport across lipid membranes, thus validating the potential for this approach to successfully quantify carrier system-induced changes to cellular membrane permeation.


Assuntos
Lipídeos de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Preparações Farmacêuticas , Dióxido de Silício/química , Permeabilidade , Farmacocinética , Porosidade
6.
Bioengineering (Basel) ; 7(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877953

RESUMO

Acetate production from food waste or sewage sludge was evaluated in four semi-continuous anaerobic digestion processes. To examine the importance of inoculum and substrate for acid production, two different inoculum sources (a wastewater treatment plant (WWTP) and a co-digestion plant treating food and industry waste) and two common substrates (sewage sludge and food waste) were used in process operations. The processes were evaluated with regard to the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis and the microbial community structure was determined. Feeding sewage sludge led to mixed acid fermentation and low total acid yield, whereas feeding food waste resulted in the production of high acetate and lactate yields. Inoculum from WWTP with sewage sludge substrate resulted in maintained methane production, despite a low hydraulic retention time. For food waste, the process using inoculum from WWTP produced high levels of lactate (30 g/L) and acetate (10 g/L), while the process initiated with inoculum from the co-digestion plant had higher acetate (25 g/L) and lower lactate (15 g/L) levels. The microbial communities developed during acid production consisted of the major genera Lactobacillus (92-100%) with food waste substrate, and Roseburia (44-45%) and Fastidiosipila (16-36%) with sewage sludge substrate. Use of the outgoing material (hydrolysates) in a biogas production system resulted in a non-significant increase in bio-methane production (+5-20%) compared with direct biogas production from food waste and sewage sludge.

7.
Nano Lett ; 17(1): 476-485, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073257

RESUMO

Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein-material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic-inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.


Assuntos
Aquaporina 4/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Dióxido de Silício/química , Humanos , Tamanho da Partícula , Porosidade
8.
J Colloid Interface Sci ; 467: 253-260, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803604

RESUMO

Mesoporous silica nanoparticles are an important class of materials with a wide range of applications. This paper presents a simple protocol for synthesis of particles as small as 40nm and with a pore size that can be as large as 9nm. Reaction conditions including type of surfactant, type of catalyst and presence of organic polymer were investigated in order to optimize the synthesis. An important aim of the work was to understand the mechanism behind the formation of these unusual structures and an explanation based on silica condensation in the small aqueous microemulsion droplets that are present inside the drops of an oil-in-water emulsion is put forward.

9.
Biotechnol Biofuels ; 8: 154, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26396592

RESUMO

BACKGROUND: High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. Operating strategies that can improve process performance in such conditions have been reported. The microbiological impacts of these are not fully understood, but their determination could help identify important factors for balanced, efficient operation. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions. METHOD: Continuous anaerobic co-digestion of household waste and albumin was carried out in laboratory-scale digesters at high ammonia concentrations (0.5-0.9 g NH3/L). The digesters operated for 320 days at 37 or 42 °C, with or without addition of a trace element mixture including iron (TE). Abundance and composition of syntrophic acetate-oxidising bacteria (SAOB) and of methanogenic and acetogenic communities were investigated throughout the study using 16S rRNA and functional gene-based molecular methods. RESULTS: Syntrophic acetate oxidation dominated methane formation in all digesters, where a substantial enhancement in digester performance and influence on microbial community by addition of TE was shown dependent on temperature. At 37 °C, TE addition supported dominance and strain richness of Methanoculleus bourgensis and altered the acetogenic community, whereas the same supplementation at 42 °C had a low impact on microbial community structure. Both with and without TE addition operation at 42 °C instead of 37 °C had low impact on digester performance, but considerably restricted acetogenic and methanogenic community structure, evenness and richness. The abundance of known SAOB was higher in digesters without TE addition and in digesters operating at 42 °C. No synergistic effect on digester performance or microbial community structure was observed on combining increased temperature with TE addition. CONCLUSIONS: Our identification of prominent populations related to enhanced performance within methanogenic (high dominance and richness of M. bourgensis) and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions. We also show that a temperature increase of only 5 °C within the mesophilic range results in an extreme dominance of one or a few species within these communities, independent of TE addition. Furthermore, functional stable operation was possible despite low microbial temporal dynamics, evenness and richness at the higher temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...