Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 8(4): 045004, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34926716

RESUMO

Significance: Quantitative measurements of cerebral hemodynamic changes due to functional activation are widely accomplished with commercial continuous wave (CW-NIRS) instruments despite the availability of the more rigorous multi-distance frequency domain (FD-NIRS) approach. A direct comparison of the two approaches to functional near-infrared spectroscopy can help in the interpretation of optical data and guide implementations of diffuse optical instruments for measuring functional activation. Aim: We explore the differences between CW-NIRS and multi-distance FD-NIRS by comparing measurements of functional activation in the human auditory cortex. Approach: Functional activation of the human auditory cortex was measured using a commercial frequency domain near-infrared spectroscopy instrument for 70 dB sound pressure level broadband noise and pure tone (1000 Hz) stimuli. Changes in tissue oxygenation were calculated using the modified Beer-Lambert law (CW-NIRS approach) and the photon diffusion equation (FD-NIRS approach). Results: Changes in oxygenated hemoglobin measured with the multi-distance FD-NIRS approach were about twice as large as those measured with the CW-NIRS approach. A finite-element simulation of the functional activation problem was performed to demonstrate that tissue oxygenation changes measured with the CW-NIRS approach is more accurate than that with multi-distance FD-NIRS. Conclusions: Multi-distance FD-NIRS approaches tend to overestimate functional activation effects, in part due to partial volume effects.

2.
J Acoust Soc Am ; 150(2): 745, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34470296

RESUMO

Frequency modulation (FM) detection at low modulation frequencies is commonly used as an index of temporal fine-structure processing. The present study evaluated the rate of improvement in monaural and dichotic FM across a range of test parameters. In experiment I, dichotic and monaural FM detection was measured as a function of duration and modulator starting phase. Dichotic FM thresholds were lower than monaural FM thresholds and the modulator starting phase had no effect on detection. Experiment II measured monaural FM detection for signals that differed in modulation rate and duration such that the improvement with duration in seconds (carrier) or cycles (modulator) was compared. Monaural FM detection improved monotonically with the number of modulation cycles, suggesting that the modulator is extracted prior to detection. Experiment III measured dichotic FM detection for shorter signal durations to test the hypothesis that dichotic FM relies primarily on the signal onset. The rate of improvement decreased as duration increased, which is consistent with the use of primarily onset cues for the detection of dichotic FM. These results establish that improvement with duration occurs as a function of the modulation cycles at a rate consistent with the independent-samples model for monaural FM, but later cycles contribute less to detection in dichotic FM.


Assuntos
Sinais (Psicologia) , Percepção do Tempo , Limiar Auditivo , Fatores de Tempo
3.
J Acoust Soc Am ; 149(3): 1434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765775

RESUMO

Traditionally, real-time generation of spectro-temporally modulated noise has been performed on a linear amplitude scale, partially due to computational constraints. Experiments often require modulation that is sinusoidal on a logarithmic amplitude scale as a result of the many perceptual and physiological measures which scale linearly with exponential changes in the signal magnitude. A method is presented for computing exponential spectro-temporal modulation, showing that it can be expressed analytically as a sum over linearly offset sidebands with component amplitudes equal to the values of the modified Bessel function of the first kind. This approach greatly improves the efficiency and precision of stimulus generation over current methods, facilitating real-time generation for a broad range of carrier and envelope signals.


Assuntos
Ruído , Estimulação Acústica
4.
J Speech Lang Hear Res ; 62(10): 3876-3886, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31638883

RESUMO

Purpose Spectral modulation detection is an increasingly common assay of suprathreshold auditory perception and has been correlated with speech perception performance. Here, the potential effects of stimulus duration and stimulus presentation level on spectral modulation detection were investigated. Method Spectral modulation detection thresholds were measured as a function of modulation frequency in young, normal-hearing listeners. The standard stimulus was a bandpass noise, and signal stimuli were created by superimposing sinusoidal spectral modulation on the bandpass noise carrier. The modulation was sinusoidal on a log2 frequency axis and a log10 (dB) amplitude scale with a random starting phase (0-2π radians). In 1 experiment, stimulus durations were 50, 100, 200, or 400 ms (at fixed level 81 dB SPL). In a 2nd experiment, stimuli were presented at sensation levels of 10, 20, 30, 40, and 60 dB SL (fixed at a duration of 400 ms). Results Spectral modulation detection thresholds were similarly low for the 400- and 200-ms durations, increased slightly for the 100-ms duration, and increased markedly for the 50-ms duration. Thresholds were lowest for 40 dB SL; increased slightly for 20, 30, and 60 dB SL; and markedly higher for the 10-dB SL condition. Conclusions The increase in thresholds for the shortest durations and lowest sensational levels is consistent with previous investigations of auditory spectral profile analysis. The effects of presentation level and stimulus duration are important considerations in the context of understanding potential relationships between the perception of spectral cues and speech perception, when designing investigations and interpreting data related to spectral envelope perception, and in the context of models of auditory perception. As examples, 2 simple models based on auditory nerve output that have been used to explain spectrotemporal modulation in previous investigations produced an output inconsistent with the present results. Plain language summary Intensity variations across audio frequency lead to spectral shapes that are essential and sometimes signature features of various sounds in the environment, including speech. Here, we show how laboratory measures of spectral shape perception depend on presentation level and stimulus duration.


Assuntos
Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Percepção da Fala/fisiologia , Fatores de Tempo , Adulto , Feminino , Voluntários Saudáveis , Audição , Humanos , Masculino , Ruído , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...