Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(28): 19680-19700, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38899035

RESUMO

Heavy metals exist in different water resources and can threaten human health, inducing several chronic illnesses such as cancer and renal diseases. Therefore, this work dealt with the fabrication of highly efficient nanomembranes based on silver nanoparticle (Ag NP)-doped hybrid polyvinyl chloride (PVC) by dapsone (DAP) using an in situ method. Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis were used to confirm the hybridization of PVC as well as the crystalline structure of hybrid PVC nanocomposites. Three varying proportions of Ag NPs (i.e., 0.1, 0.2, and 0.3%) were used to fabricate hybrid PVC-DAP nanomembranes. The Brunauer-Emmet-Teller (BET) method was used to estimate membrane surface area, porosity and distribution of pore volume. The mechanical strength and antibacterial properties of the cased films notably improved when Ag NPs were added depending on the NP ratio inside the matrix. Results obtained from adsorption experiments of PVC-DAP nanomembranes at 35 °C revealed that the optimum nanomembrane was achieved at 0.2% NPs and its percentage of removal effectiveness ranged from 71 to 95% depending on the ion type. The surface morphology of the PVC-DAP-0.2 Ag NPs before and after the adsorption process of the metal ions was analyzed using SEM-EDX. Moreover, the impact of other parameters such as the initial concentrations, pH media, temperature, and contacting time, on the adsorption efficiency of PVC-DAP-0.2 Ag NPs was also investigated. Furthermore, kinetic and adsorption isotherm models were suggested to describe the adsorption efficiency of the PVC-DAP-0.2 Ag NP membrane, and the uptake mechanism of metal ion removal was studied. The obtained outcomes for these fabricated nanomembranes demonstrated that they could be potential candidates for water purification and other potential purposes including biomedical areas.

2.
Environ Sci Pollut Res Int ; 30(26): 69514-69532, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138129

RESUMO

The present work focuses on the photocatalytic degradation of methylene blue (MB) on erbium ion (Er3+) doped TiO2 under visible light. Pure TiO2 nanoparticles and erbium (Er3+) doped TiO2 nanocomposite (Er3+/TiO2) NCs were synthesized using the sol-gel method. The synthesized (Er3+/TiO2) NCs were characterized using Fourier transform infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HR-SEM), elementary dispersive X-ray (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS), specific surface area (BET), zeta potential, and particle size. Different parameters were used to study their efficiency for the photoreactor (PR) and the synthesized catalyst. These parameters include pH of the feed solution, the rate of flow, the presence of an oxidizing agent (aeration pump), different ratios of nanoparticles, the amount of catalyst, and the concentrations of pollutants. An example of an organic contaminant was the dye methylene blue (MB). The result achieved using the synthesized nanoparticles (I) under ultraviolet light pure TiO2 was found to have degraded by 85%. For (Er3+/TiO2) NCs under visible light, dye removal increased with pH to a maximum of 77% degradation at pH 5. Furthermore, photocatalytic efficiency improves to 80% at 40 rpm (3 l/h) low motor speed. The degradation efficiency decreased to 70% when the MB concentration was increased from 5 to 30 mg/L. When oxygen content was increased using an air pump, and deterioration reached 85% under visible light, it improved performance.


Assuntos
Metais Terras Raras , Nanopartículas , Azul de Metileno/química , Érbio , Luz , Titânio/química , Nanopartículas/química , Catálise
4.
Sci Rep ; 12(1): 21234, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481778

RESUMO

In this study, the main motivation of this work is desalination of water for irrigation arid area such as Sidri- Baba basins- south Sinai, Egypt. Also, the novelty of this work is modification of TFC surface membrane by mix of HA, DA and GO to get high performance of FO technique. Interfacial polymerization was employed to modify a thin-film composite (TFC) membrane for forward osmosis (FO) applications; moreover, graphene oxide (GO) nanosheets (GONs), a dopamine solution (DA), and naturally accessible humic acid (HA) were modified on a polyethersulfone (PES) substrate. The effects of the different quantities of GO, HA, and DA on the membrane surfaces, as well as their various cross-sectional morphologies and FO-desalination capabilities, were investigated. The integrated TFC membrane containing appropriate GO, HA, and DA blends outperformed the control membrane, obtaining high water flux, and high salt rejection. Furthermore,.


Assuntos
Água , Estudos Transversais , Egito
5.
Environ Sci Pollut Res Int ; 29(43): 65699-65722, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35499738

RESUMO

Rapid urbanisation has had a significant negative influence on the water bodies that flow through and around urban areas. This study aims to evaluate the water quality and analyse the suitability for drinking and irrigation uses. This study envisaged assessing the water quality status of the groundwater using the pollution index of groundwater (PIG), ecological risk index (ERI) and multivariate statistical techniques, namely cluster analysis (CA) and principal component analysis (PCA), that were applied to differentiate the sources of water quality variation and determine the cause of pollution in the study area. Most groundwater is unsuitable for drinking and irrigation consumption, depending on analyses. PIG values indicated high pollution levels in the studied water body, rendering it unsuitable for any practical purpose. CA results showed the impact of surface water and treatment plant on groundwater. PCA was used to identify four important factors in the groundwater, including mineral and nutrient pollution, heavy metal pollution, organic pollution and faecal contamination. The deteriorating water quality of the groundwater was demonstrated to originate from vast sources of anthropogenic activities, especially municipal sewage discharge. Study wells had greater concentrations of Cl- and Na+ in their water because seawater flows into the aquifer system and mixes with the marine aquifer matrix. Thus, the current work reveals how to employ the PIG and multivariate statistical approaches to obtain more accessible and more meaningful information about the water quality of groundwater and to identify the sources of pollution.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Egito , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Metais Pesados/análise , Esgotos/análise , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Water Res ; 213: 118143, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149365

RESUMO

Elemental sulfur (S0) is known to be an abundant, non-toxic material with a wide range of redox states (-2 to +6) and may serve as an excellent electron carrier in wastewater treatment. In turn, S0-driven bioprocesses, which employ S0 as electron donor or acceptor, have recently established themselves as cost-effective therefore attractive solutions for wastewater treatment. Numerous related processes have, to date, been developed from laboratory experiments into full-scale applications, including S0-driven autotrophic denitrification for nitrate removal and S0-reducing organic removal. Compared to the conventional activated sludge process, these bioprocesses require only a small amount of organic matter and produce very little sludge. There have been great efforts to characterize chemical and biogenic S0 and related functional microorganisms in order to identify the biochemical pathways, upgrade the bioprocesses, and assess the impact of the operating factors on process performance, ultimately aiming to better understand and to optimize the processes. This paper is therefore a comprehensive overview of emerging S0-driven biotechnologies, including the development of S0-driven autotrophic denitrification and S0-based sulfidogenesis, as well as the associated microbiology and biochemistry. Also reviewed here are the physicochemical characteristics of S0 and the effects that environmental factors such as pH, influent sulfur/nitrate ratio, temperature, S0 particle size and reactor configurations have on the process. Research gaps, challenges of process applications and potential areas for future research are further proposed and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...