Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
mSystems ; 6(3): e0105820, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061574

RESUMO

Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here, we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exometabolomics analysis in sample matrices containing up to 2 M total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and it can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5 to 6 orders of magnitude) with excellent linearity, and low median interday reproducibility (e.g., 2.6%). MetFish was successfully applied in targeted and untargeted exometabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exometabolome during community succession; in situ in a native prairie soil, whose exometabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exometabolome over time in the well. IMPORTANCE The identification and accurate quantification of metabolites using electrospray ionization-mass spectrometry (ESI-MS) in hypersaline samples is a challenge due to matrix effects. Clean-up and desalting strategies that typically work well for samples with lower salt concentrations are often ineffective in hypersaline samples. To address this gap, we developed and demonstrated a simple yet sensitive and accurate method-MetFish-using chemical derivatization to enable mass spectrometry-based metabolomics in a variety of hypersaline samples from varied ecosystems and containing up to 2 M dissolved salts.

2.
ISME J ; 15(2): 421-434, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929206

RESUMO

The rumen harbors a complex microbial mixture of archaea, bacteria, protozoa, and fungi that efficiently breakdown plant biomass and its complex dietary carbohydrates into soluble sugars that can be fermented and subsequently converted into metabolites and nutrients utilized by the host animal. While rumen bacterial populations have been well documented, only a fraction of the rumen eukarya are taxonomically and functionally characterized, despite the recognition that they contribute to the cellulolytic phenotype of the rumen microbiota. To investigate how anaerobic fungi actively engage in digestion of recalcitrant fiber that is resistant to degradation, we resolved genome-centric metaproteome and metatranscriptome datasets generated from switchgrass samples incubated for 48 h in nylon bags within the rumen of cannulated dairy cows. Across a gene catalog covering anaerobic rumen bacteria, fungi and viruses, a significant portion of the detected proteins originated from fungal populations. Intriguingly, the carbohydrate-active enzyme (CAZyme) profile suggested a domain-specific functional specialization, with bacterial populations primarily engaged in the degradation of hemicelluloses, whereas fungi were inferred to target recalcitrant cellulose structures via the detection of a number of endo- and exo-acting enzymes belonging to the glycoside hydrolase (GH) family 5, 6, 8, and 48. Notably, members of the GH48 family were amongst the highest abundant CAZymes and detected representatives from this family also included dockerin domains that are associated with fungal cellulosomes. A eukaryote-selected metatranscriptome further reinforced the contribution of uncultured fungi in the ruminal degradation of recalcitrant fibers. These findings elucidate the intricate networks of in situ recalcitrant fiber deconstruction, and importantly, suggest that the anaerobic rumen fungi contribute a specific set of CAZymes that complement the enzyme repertoire provided by the specialized plant cell wall degrading rumen bacteria.


Assuntos
Fungos/metabolismo , Proteoma , Rúmen/microbiologia , Anaerobiose , Animais , Bovinos , Feminino , Fungos/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteoma/metabolismo , Rúmen/metabolismo
3.
NPJ Biofilms Microbiomes ; 6(1): 12, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170068

RESUMO

Although the etiology of obesity is not well-understood, genetic, environmental, and microbiome elements are recognized as contributors to this rising pandemic. It is well documented that Roux-en-Y gastric bypass (RYGB) surgery drastically alters the fecal microbiome, but data are sparse on temporal and spatial microbiome and metabolome changes, especially in human populations. We characterized the structure and function (through metabolites) of the microbial communities in the gut lumen and structure of microbial communities on mucosal surfaces in nine morbidly obese individuals before, 6 months, and 12 months after RYGB surgery. Moreover, using a comprehensive multi-omic approach, we compared this longitudinal cohort to a previously studied cross-sectional cohort (n = 24). In addition to the expected weight reduction and improvement in obesity-related comorbidities after RYGB surgery, we observed that the impact of surgery was much greater on fecal communities in comparison to mucosal ones. The changes in the fecal microbiome were linked to increased concentrations of branched-chain fatty acids and an overall decrease in secondary bile acid concentrations. The microbiome and metabolome data sets for this longitudinal cohort strengthen our understanding of the persistent impact of RYGB on the gut microbiome and its metabolism. Our findings highlight the importance of changes in mucosal and fecal microbiomes after RYGB surgery. The spatial modifications in the microbiome after RYGB surgery corresponded to persistent changes in fecal fermentation and bile acid metabolism, both of which are associated with improved metabolic outcomes.


Assuntos
Bactérias/classificação , Derivação Gástrica/efeitos adversos , Metabolômica/métodos , Obesidade/cirurgia , Análise de Sequência de DNA/métodos , Adulto , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
4.
J Am Heart Assoc ; 8(17): e013169, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31450994

RESUMO

Background The right ventricle exposed to chronic pressure overload exhibits hypertrophy and decompensates when exposed to stress. We hypothesize that impaired ability to increase myocardial oxidative flux through pyruvate dehydrogenase leads to hypertrophied right ventricular (RV) dysfunction when exposed to hemodynamic stress, and pyruvate dehydrogenase stimulation can improve RV function. Methods and Results Infant male Yorkshire piglets (13.5±0.6 kg weight, n=19) were used to assess substrate fractional contribution to the citric acid cycle after sustained pulmonary artery banding (PAB). Carbon 13-labeled glucose, lactate, and leucine, oxidative substrate tracers for the citric acid cycle, were infused into the right coronary artery on 7 to 10 days after PAB. RV systolic pressure, RV free wall thickness, and individual cardiomyocyte cell size after PAB were significantly elevated compared with the sham group. Both fractional glucose and lactate oxidations in the PAB group were >2-fold higher than in the sham group. Pigs with overdrive atrial pacing (≈80% increase in heart rate) stress after PAB showed only a 22% increase in rate-pressure product from baseline before atrial pacing and limited carbohydrate oxidation rate in the right ventricle. Intracoronary infusion of dichloroacetate, a pyruvate dehydrogenase agonist, produced higher rate-pressure product (59% increase) in response to increased workload by atrial pacing in association with a marked increase in lactate oxidation. Conclusions The immature hypertrophied right ventricle shows limited ability to increase carbohydrate oxidation in response to tachycardia stress leading to energy supply/utilization imbalance and decreased systolic function. Enhanced pyruvate dehydrogenase activation by dichloroacetate increases energy supply and preserves hypertrophied RV contractile function during hemodynamic stress.


Assuntos
Metabolismo Energético , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Disfunção Ventricular Direita/metabolismo , Função Ventricular Direita , Remodelação Ventricular , Animais , Animais Recém-Nascidos , Ácido Dicloroacético/administração & dosagem , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/administração & dosagem , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Ligadura , Masculino , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/cirurgia , Complexo Piruvato Desidrogenase/metabolismo , Sus scrofa , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
5.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150625

RESUMO

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Assuntos
Transtorno do Espectro Autista/microbiologia , Sintomas Comportamentais/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Bactérias , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microbiota , Fatores de Risco
6.
J Am Heart Assoc ; 7(11)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848498

RESUMO

BACKGROUND: Surgical palliation or repair of complex congenital heart disease in early infancy can produce right ventricular (RV) pressure overload, often leading to acute hemodynamic decompensation. The mechanisms causing this acute RV dysfunction remain unclear. We tested the hypothesis that the immature right ventricle lacks the ability to modify substrate metabolism in order to meet increased energy demands induced by acute pressure overloading. METHODS AND RESULTS: Twenty-two infant male mixed breed Yorkshire piglets were randomized to a sham operation (Control) or pulmonary artery banding yielding >2-fold elevation over baseline RV systolic pressure. We used carbon 13 (13C)-labeled substrates and proton nuclear magnetic resonance to assess RV energy metabolism. [Phosphocreatine]/[ATP] was significantly lower after pulmonary artery banding. [Phosphocreatine]/[ATP] inversely correlated with energy demand indexed by maximal sustained RV systolic pressure/left ventricular systolic pressure. Fractional contributions of fatty acids to citric acid cycle were significantly lower in the pulmonary artery banding group than in the Control group (medium-chain fatty acids; 14.5±1.6 versus 8.2±1.0%, long-chain fatty acids; 9.3±1.5 versus 5.1±1.1%). 13C-flux analysis showed that flux via pyruvate decarboxylation did not increase during RV pressure overloading. CONCLUSIONS: Acute RV pressure overload yielded a decrease in [phosphocreatine]/[ATP] ratio, implying that ATP production did not balance the increasing ATP requirement. Relative fatty acids oxidation decreased without a reciprocal increase in pyruvate decarboxylation. The data imply that RV inability to adjust substrate oxidation contributes to energy imbalance, and potentially to contractile failure. The data suggest that interventions directed at increasing RV pyruvate decarboxylation flux could ameliorate contractile dysfunction associated with acute pressure overloading.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Metabolismo Energético , Ventrículos do Coração/cirurgia , Contração Miocárdica , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita , Pressão Ventricular , Adaptação Fisiológica , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Gasosa-Espectrometria de Massas , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética , Sus scrofa , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
7.
Bioresour Technol ; 257: 172-180, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29500951

RESUMO

The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly ß-O-4 ether linkages. Thermal degradation of pretreated lignin during wet oxidation occurred in two stages. Carboxylic acids were the main degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except with temperatures over 210 °C, 5 min residence time and 11.7 wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of high-value bioproducts from lignin.


Assuntos
Coffea , Lignina , Álcalis , Café , Oxigênio
8.
Sci Rep ; 8(1): 297, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321512

RESUMO

The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized - and confirmed - that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.


Assuntos
Interações Microbianas , Microbiota , Fenótipo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Técnicas de Cocultura , Glucose/metabolismo
9.
ChemSusChem ; 11(4): 781-792, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29178551

RESUMO

The solubilization and efficient upgrading of high loadings of polyethylene terephthalate (PET) are important challenges, and most solvents for PET are highly toxic. Herein, a low-cost (ca. $1.2 kg-1 ) and biocompatible ionic liquid (IL), cholinium phosphate ([Ch]3 [PO4 ]), is demonstrated for the first time to play bifunctional roles in the solubilization and glycolytic degradation of PET. A high loading of PET (10 wt %) was readily dissolved in [Ch]3 [PO4 ] at relatively low temperatures (120 °C, 3 h) and under water-rich conditions. In-depth analysis of the solution revealed that high PET solubilization in [Ch]3 [PO4 ] could be ascribed to significant PET depolymerization. Acid precipitation yielded terephthalic acid as the dominant depolymerized monomer with a theoretical yield of approximately 95 %. Further exploration showed that in the presence of ethylene glycol (EG), the [Ch]3 [PO4 ]-catalyzed glycolysis of PET could efficiently occur with approximately 100 % conversion of PET and approximately 60.6 % yield of bis(2-hydroxyethyl)terephthalate under metal-free conditions. The IL could be reused at least three times without an apparent decrease in activity. NMR spectroscopy analysis revealed that strong hydrogen-bonding interactions between EG and the IL played an important role in the activation of EG and promotion of the glycolysis reaction. This study opens up avenues for exploring environmentally benign and efficient IL technology for solubilizing and recycling postconsumer polyester plastics.


Assuntos
Líquidos Iônicos , Ácidos Ftálicos/síntese química , Polietilenotereftalatos/química , Etilenoglicol/química , Glicólise , Química Verde/métodos , Líquidos Iônicos/economia , Poliésteres/química , Solubilidade , Solventes
10.
Anaerobe ; 49: 121-131, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29274915

RESUMO

Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Using 1H-NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/microbiologia , Bactérias/metabolismo , Fezes/química , Microbioma Gastrointestinal , 2-Propanol/análise , 2-Propanol/metabolismo , Adolescente , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Biomarcadores/análise , Biomarcadores/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Masculino , Neurotransmissores/análise , Neurotransmissores/metabolismo
11.
ISME J ; 11(9): 2047-2058, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28548658

RESUMO

Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) are anatomically different bariatric operations. RYGB achieves greater weight loss compared with LAGB. Changes in the gut microbiome have been documented after RYGB, but not LAGB, and the microbial contribution to sustainable surgical weight loss warrants further evaluation. We hypothesized that RYGB imposes greater changes on the microbiota and its metabolism than LAGB, and that the altered microbiota may contribute to greater weight loss. Using multi-omic approaches, we analyzed fecal microbial community structure and metabolites of pre-bariatric surgery morbidly obese (PreB-Ob), normal weight (NW), post-RYGB, and post-LAGB participants. RYGB microbiomes were significantly different from those from NW, LAGB and PreB-Ob. Microbiome differences between RYGB and PreB-Ob populations were mirrored in their metabolomes. Diversity was higher in RYGB compared with LAGB, possibly because of an increase in the abundance of facultative anaerobic, bile-tolerant and acid-sensible microorganisms in the former. Possibly because of lower gastric acid exposure, phylotypes from the oral cavity, such as Escherichia, Veillonella and Streptococcus, were in greater abundance in the RYGB group, and their abundances positively correlated with percent excess weight loss. Many of these post-RYGB microorganisms are capable of amino-acid fermentation. Amino-acid and carbohydrate fermentation products-isovalerate, isobutyrate, butyrate and propionate-were prevalent in RYGB participants, but not in LAGB participants. RYGB resulted in greater alteration of the gut microbiome and metabolome than LAGB, and RYGB group exhibited unique microbiome composed of many amino-acid fermenters, compared with nonsurgical controls.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Fezes/microbiologia , Feminino , Derivação Gástrica , Gastroplastia , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso , Adulto Jovem
12.
J Cheminform ; 9: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303165

RESUMO

BACKGROUND: Isotopic labeling is an analytic technique that is used to track the movement of isotopes through reaction networks. In general, the applicability of isotopic labeling techniques is limited to the investigation of reaction networks that consider homonuclear moieties, whose atoms are of one tracer element with two isotopes, distinguished by the presence of one additional neutron. RESULTS: This article presents a reformulation of the modeling framework for isotopic labeling, generalized to arbitrarily large, heteronuclear moieties, arbitrary numbers of isotopic tracer elements, and arbitrary numbers of isotopes per element, distinguished by arbitrary numbers of additional neutrons. CONCLUSIONS: With this work, it is now possible to simulate the isotopic labeling states of metabolites in completely arbitrary biochemical reaction networks.

13.
Am J Physiol Heart Circ Physiol ; 312(4): H721-H727, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159812

RESUMO

Venoarterial extracorporeal membrane oxygenation (VA-ECMO) provides hemodynamic rescue for patients encountering right or left ventricular (RV or LV) decompensation, particularly after surgery for congenital heart defects. ECMO, supported metabolically by parenteral nutrition, provides reductions in myocardial work and energy demand and, therefore, enhances functional recovery. The RV must often assume systemic ventricular pressures and function on weaning from VA-ECMO. However the substrate utilization responses of the RV to VA-ECMO or stimulation are unknown. We determined RV and LV substrate utilization response to VA-ECMO in immature swine heart. Mixed-breed male Yorkshire pigs (33-49 days old) underwent normal pressure volume loading (control, n = 5) or were unloaded by VA-ECMO (ECMO, n = 10) for 8 h. Five pigs with ECMO received intravenous thyroid hormone [triiodothyronine (T3)] to alter substrate utilization. Carbon 13 (13C)-labeled substrates (lactate and medium-chain and long-chain fatty acids) were systemically infused as metabolic tracers. Analyses by nuclear magnetic resonance showed that both ventricles have similar trends of fractional 13C-labeled substrate contributions to the citric acid cycle under control conditions. VA-ECMO produced higher long-chain fatty acids and lower lactate contribution to the citric acid cycle via inhibition of pyruvate dehydrogenase, whereas T3 promoted lactate metabolism in both ventricles. However, these metabolic shifts were smaller in RV, and RV fatty acid contributions showed minimal response to perturbations. Furthermore, VA-ECMO and T3 also achieved high [phosphocreatine]/[ATP] and low [NADH]/[NAD+] in LV but not in RV. These data suggest that the RV shows decreased ability to modify substrate utilization and achieve improvements in energy supply/demand during VA-ECMO.NEW & NOTEWORTHY We showed that the right ventricle unloaded by venoarterial extracorporeal membrane oxygenation (VA-ECMO) has diminished capacity to alter substrate utilization compared with the left ventricle. This decrease in metabolic flexibility contributes to the inability to increase high-energy phosphate reserves during myocardial rest by VA-ECMO.


Assuntos
Oxigenação por Membrana Extracorpórea , Ventrículos do Coração/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica/fisiologia , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , NAD/metabolismo , Fosfocreatina/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Suínos , Tri-Iodotironina/farmacologia
14.
J Cereb Blood Flow Metab ; 36(11): 1992-2004, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27604310

RESUMO

Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.


Assuntos
Apoptose , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Ácido Glutâmico/metabolismo , Hipotermia Induzida , Neurônios/metabolismo , Animais , Ponte Cardiopulmonar , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Glucose/metabolismo , Masculino , Neurônios/patologia , Perfusão , Reperfusão , Suínos
15.
Extremophiles ; 20(3): 291-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26995682

RESUMO

The Norris Geyser Basin in Yellowstone National Park contains a large number of hydrothermal systems, which host microbial populations supported by primary productivity associated with a suite of chemolithotrophic metabolisms. We demonstrate that Metallosphaera yellowstonensis MK1, a facultative autotrophic archaeon isolated from a hyperthermal acidic hydrous ferric oxide (HFO) spring in Norris Geyser Basin, excretes formaldehyde during autotrophic growth. To determine the fate of formaldehyde in this low organic carbon environment, we incubated native microbial mat (containing M. yellowstonensis) from a HFO spring with (13)C-formaldehyde. Isotopic analysis of incubation-derived CO2 and biomass showed that formaldehyde was both oxidized and assimilated by members of the community. Autotrophy, formaldehyde oxidation, and formaldehyde assimilation displayed different sensitivities to chemical inhibitors, suggesting that distinct sub-populations in the mat selectively perform these functions. Our results demonstrate that electrons originally resulting from iron oxidation can energetically fuel autotrophic carbon fixation and associated formaldehyde excretion, and that formaldehyde is both oxidized and assimilated by different organisms within the native microbial community. Thus, formaldehyde can effectively act as a carbon and electron shuttle connecting the autotrophic, iron oxidizing members with associated heterotrophic members in the HFO community.


Assuntos
Processos Autotróficos , Transporte de Elétrons , Formaldeído/metabolismo , Processos Heterotróficos , Fontes Hidrotermais/microbiologia , Sulfolobales/metabolismo , Ácidos/análise , Carbono/metabolismo , Fontes Hidrotermais/química , Ferro/análise , Oxirredução , Sulfolobales/isolamento & purificação
16.
Am J Physiol Heart Circ Physiol ; 309(7): H1157-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232235

RESUMO

Nutritional energy support during extracorporeal membrane oxygenation (ECMO) should promote successful myocardial adaptation and eventual weaning from the ECMO circuit. Fatty acids (FAs) are a major myocardial energy source, and medium-chain FAs (MCFAs) are easily taken up by cell and mitochondria without membrane transporters. Odd-numbered MCFAs supply carbons to the citric acid cycle (CAC) via anaplerotic propionyl-CoA as well as acetyl-CoA, the predominant ß-oxidation product for even-numbered MCFA. Theoretically, this anaplerotic pathway enhances carbon entry into the CAC, and provides superior energy state and preservation of protein synthesis. We tested this hypothesis in an immature swine model undergoing ECMO. Fifteen male Yorkshire pigs (26-45 days old) with 8-h ECMO received either normal saline, heptanoate (odd-numbered MCFA), or octanoate (even-numbered MCFA) at 2.3 µmol·kg body wt(-1)·min(-1) as MCFAs systemically during ECMO (n = 5/group). The 13-carbon ((13)C)-labeled substrates ([2-(13)C]lactate, [5,6,7-(13)C3]heptanoate, and [U-(13)C6]leucine) were systemically infused as metabolic markers for the final 60 min before left ventricular tissue extraction. Extracted tissues were analyzed for the (13)C-labeled and absolute concentrations of metabolites by nuclear magnetic resonance and gas chromatography-mass spectrometry. Octanoate produced markedly higher myocardial citrate concentration, and led to a higher [ATP]-to-[ADP] ratio compared with other groups. Unexpectedly, octanoate and heptanoate increased the flux of propionyl-CoA relative to acetyl-CoA into the CAC compared with control. MCFAs promoted increases in leucine oxidation, but were not associated with a difference in protein synthesis rate. In conclusion, octanoate provides energetic advantages to the heart over heptanoate.


Assuntos
Caprilatos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Oxigenação por Membrana Extracorpórea , Coração/efeitos dos fármacos , Heptanoatos/farmacologia , Miocárdio/metabolismo , Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Caprilatos/metabolismo , Isótopos de Carbono , Ácido Cítrico/metabolismo , Metabolismo Energético , Cromatografia Gasosa-Espectrometria de Massas , Heptanoatos/metabolismo , Leucina/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Ressonância Magnética , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Modelos Animais , Oxirredução/efeitos dos fármacos , Sus scrofa , Suínos
17.
PLoS One ; 10(8): e0135262, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266538

RESUMO

Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes.


Assuntos
Estenose da Valva Aórtica/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilação , Acetilglucosamina/metabolismo , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/fisiopatologia , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/fisiopatologia , Ciclo do Ácido Cítrico , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética
18.
Am J Physiol Heart Circ Physiol ; 309(1): H137-46, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25910802

RESUMO

Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-(13)C] pyruvate, as a reference substrate for oxidation, and [(13)C6]-l-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Oxigenação por Membrana Extracorpórea , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Ácido Pirúvico/farmacologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Aminoácidos/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Radioisótopos de Carbono , Ácidos Graxos/metabolismo , Leucina/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Suínos
19.
Biochemistry ; 54(20): 3207-17, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25923019

RESUMO

Thermophilic proteins have found extensive use in research and industrial applications because of their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, constituting a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamic motions over several time scales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures to compare its structure, dynamics, and function to those of a mesophilic counterpart, human cyclophilin A (CypA). Unlike those of most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to that of CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Fast time scale (pico- to nanosecond) dynamics are largely conserved between the two proteins, in accordance with the high degree of structural similarity, although differences do exist in their temperature dependencies. Slower (microsecond) time scale motions are likewise localized to similar regions in the two proteins with some variability in their magnitudes yet do not exhibit significant temperature dependencies in either enzyme.


Assuntos
Ciclofilinas/química , Domínio Catalítico , Temperatura Baixa , Estabilidade Enzimática , Geobacillus/enzimologia , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
20.
Protein Sci ; 24(5): 651-60, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25564798

RESUMO

Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove ubiquitin (Ub) and interferon stimulated gene product 15 (ISG15) from numerous proteins involved in cellular signaling. Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the structural plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHFV vOTU, both alone and in complex with Ub, discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHFV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/química , Peptídeo Hidrolases/química , Estrutura Terciária de Proteína , Sítios de Ligação , Cristalografia por Raios X , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/virologia , Humanos , Ressonância Magnética Nuclear Biomolecular , Especificidade por Substrato , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...