Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(6): 104377, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620425

RESUMO

Antimony sulfide, Sb2S3, is interesting as the phase-change material for applications requiring high transmission from the visible to telecom wavelengths, with its band gap tunable from 2.2 to 1.6 eV, depending on the amorphous and crystalline phase. Here we present results from an interlaboratory study on the interplay between the structural change and resulting optical contrast during the amorphous-to-crystalline transformation triggered both thermally and optically. By statistical analysis of Raman and ellipsometric spectroscopic data, we have identified two regimes of crystallization, namely 250°C ≤ T < 300°C, resulting in Type-I spherulitic crystallization yielding an optical contrast Δn ∼ 0.4, and 300 ≤ T < 350°C, yielding Type-II crystallization bended spherulitic structure with different dielectric function and optical contrast Δn ∼ 0.2 below 1.5 eV. Based on our findings, applications of on-chip reconfigurable nanophotonic phase modulators and of a reconfigurable high-refractive-index core/phase-change shell nanoantenna are designed and proposed.

2.
RSC Adv ; 10(63): 38233-38243, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35517541

RESUMO

Mesoporous TiO2 films with enhanced photocatalytic activity in both UV and visible wavelength ranges were developed through a non-conventional atomic layer deposition (ALD) process at room temperature. Deposition at such a low temperature promotes the accumulation of by-products in the amorphous TiO2 films, caused by the incomplete hydrolysis of the TiCl4 precursor. The additional thermal annealing induces the fast recrystallisation of amorphous films, as well as an in situ acidic treatment of TiO2. The interplay between the deposition parameters, such as purge time, the amount of structural defects introduced and the enhancement of the photocatalytic properties from different mesoporous films clearly shows that our easily upscalable non-conventional ALD process is of great industrial interest for environmental remediation and other photocatalytic applications, such as hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...