Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(44): e202310613, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37608514

RESUMO

The active metal template (AMT) strategy is a powerful tool for the formation of mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes, allowing the synthesis of a variety of MIMs, including π-conjugated and multicomponent macrocycles. Cycloparaphenylene (CPP) is an emerging molecule characterized by its cyclic π-conjugated structure and unique properties. Therefore, diverse modifications of CPPs are necessary for its wide application. However, most CPP modifications require early stage functionalization and the direct modification of CPPs is very limited. Herein, we report the synthesis of a catenane consisting of [9]CPP and a 2,2'-bipyridine macrocycle as a new CPP analogue that contains a reliable synthetic scaffold enabling diverse and concise post-modification. Following the AMT strategy, the [9]CPP-bipyridine catenane was successfully synthesized through Ni-mediated aryl-aryl coupling. Catalytic C-H borylation/cross-coupling and metal complexation of the bipyridine macrocycle moiety, an effective post-functionalization method, were also demonstrated with the [9]CPP-bipyridine catenane. Single-crystal X-ray structural analysis revealed that the [9]CPP-bipyridine catenane forms a tridentated complex with an Ag ion inside the CPP ring. This interaction significantly enhances the phosphorescence lifetime through improved intermolecular interactions.

2.
Chem Asian J ; 18(18): e202300437, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545029

RESUMO

Application of bioisostere plays an important role in drug discovery. α-Aminoboronic acid is the familiar bioisostere of α-amino acid. Developing reactions for the synthesis of a wide variety of α-aminoboronic acid is one important task for synthetic chemistry. Herein, we report the development of nucleophilic C-borylation chemistry for N-arylimines catalyzed by nickel. The reaction proceeds through the insertion of a borylnickel species into the C=N bond to afford the corresponding α-aminoboronate, which was isolated as acetamide after trapping with acetic anhydride. N-Benzyl imine is also tolerated by the developed reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...