Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 3): 159719, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302421

RESUMO

Improving the biomass retention and the sludge system stability to promote the full-scale application of anammox process is the focus of current related research. In this study, a calcium silicate hydrate functional material with calcium-releasing ability and weak alkalinity was used for an enhanced anammox process. In the long-term operation, an increase in the nitrogen removal rate (NRR) from 2.75 to 13.38 gN/L/d was achieved after 50 days of operation, with the abundance of Candidatus Kuenenia increased from 40.1 % to 47.0 %. The anammox activity was strengthened from 0.089 to 0.55 gN/gVSS/d over 50 days, with a growth rate being fitted at 0.0310 d-1. The resilience of the EGSB anammox system after inhibitions was investigated by substrate shock and low pH shock in long-term operation and batch test. Besides that, the phosphorus removal efficiency of the reactor reached up to 90 % under the positive effect of functional material. The functional material was shown to continuously provide calcium in the long-term for the reaction of hydroxyapatite (HAP) formation, which further improved the granular properties of the sludge and the biomass retention ability of the reactor. The promotion effect of functional material on the sludge granulation and anammox microbes retaining efficiency was the key for a high-resilience anammox EGSB reactor.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/química , Anaerobiose , Biomassa , Cálcio , Oxidação Anaeróbia da Amônia , Oxirredução , Nitrogênio
2.
Water Res ; 221: 118751, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728499

RESUMO

A lengthy start-up period has been one of the key obstacles limiting the application of the anammox process. In this investigation, a nitrification-denitrification sludge was used to start-up the anammox EGSB process. The transformation process from nitrification-denitrification sludge to anammox granule sludge was explored through the aspects of nitrogen removal performance, granule properties, microbial community structure, and evolution route. A successful start-up of the anammox process was achieved after 94 days of reactor operation. The highest nitrogen removal rate (NRR) obtained was 7.25±0.16 gN/L/d at a nitrogen loading rate (NLR) of 8.0 gN/L/d, and the corresponding nitrogen removal efficiency was a high 90.61±1.99%. The results of the microbial analysis revealed significant changes in anammox bacteria, nitrifying bacteria, and denitrifying bacteria in the sludge. Notably, the anammox bacteria abundance increased from 2.5% to 29.0% during the operation, and Candidatus Kuenenia and Candidatus Brocadia were the dominant genera. Distinct-different successions on Candidatus Brocadia and Candidatus Kuenenia were also observed over the long-term period. In addition, the settling performance, anammox activity and biomass retention capacity of the granules were significantly enhanced during this process, and the corresponding granule evolution route was also proposed. The results in this study indicate the feasibility of using available seed sludge source for the fast-transformation of anammox granules, it is beneficial to the large-scale application of anammox process and the utilization of excess sludge.


Assuntos
Microbiota , Nitrificação , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias , Reatores Biológicos/microbiologia , Desnitrificação , Nitrogênio , Oxirredução , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA