Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 93: 117462, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683572

RESUMO

Enteropeptidase is located in the duodenum that involved in intestinal protein digestion. We have reported enteropeptidase inhibitors with low systemic exposure. The aim of this study was to discover novel enteropeptidase inhibitors showing more potent in vivo efficacy while retaining low systemic exposure. Inhibitory mechanism-based drug design led us to cyclize ester 2 to medium-sized lactones, showing potent enteropeptidase inhibitory activity and improving the ester stability, thus increasing fecal protein output in vivo. Optimization on the linker between two benzene rings resulted in discovery of ether lactone 6b, exhibiting further enhanced enteropeptidase inhibitory activity and long duration of inhibitory state. Oral administration of 6b in mice significantly elevated fecal protein output compared with the lead 2. In addition, 6b showed low systemic exposure along with low intestinal absorption. Furthermore, we identified the 10-membered lactonization method for scale-up synthesis of 6b, which does not require high-dilution conditions.


Assuntos
Desenho de Fármacos , Enteropeptidase , Animais , Camundongos , Administração Oral , Ésteres , Éteres , Lactonas/farmacologia
2.
J Med Chem ; 65(12): 8456-8477, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35686954

RESUMO

To discover a novel series of potent inhibitors of enteropeptidase, a membrane-bound serine protease localized to the duodenal brush border, 4-guanidinobenzoate derivatives were evaluated with minimal systemic exposure. The 1c docking model enabled the installation of an additional carboxylic acid moiety to obtain an extra interaction with enteropeptidase, yielding 2a. The oral administration of 2a significantly elevated the fecal protein output, a pharmacodynamic marker, in diet-induced obese (DIO) mice, whereas subcutaneous administration did not change this parameter. Thus, systemic exposure of 2a was not required for its pharmacological effects. Further optimization focusing on the in vitro IC50 value and T1/2, an indicator of dissociation time, followed by enhanced in vivo pharmacological activity based on the ester stability of the compounds, revealed two series of potent enteropeptidase inhibitors, a dihydrobenzofuran analogue ((S)-5b, SCO-792) and phenylisoxazoline (6b), which exhibited potent anti-obesity effects despite their low systemic exposure following their oral administration to DIO rats.


Assuntos
Enteropeptidase , Obesidade , Animais , Benzoatos , Enteropeptidase/metabolismo , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...