Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 10(1): 26, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448495

RESUMO

The relationships between materials processing and structure can vary between terrestrial and reduced gravity environments. As one case study, we compare the nonequilibrium melt processing of a rare-earth titanate, nominally 83TiO2-17Nd2O3, and the structure of its glassy and crystalline products. Density and thermal expansion for the liquid, supercooled liquid, and glass are measured over 300-1850 °C using the Electrostatic Levitation Furnace (ELF) in microgravity, and two replicate density measurements were reproducible to within 0.4%. Cooling rates in ELF are 40-110 °C s-1 lower than those in a terrestrial aerodynamic levitator due to the absence of forced convection. X-ray/neutron total scattering and Raman spectroscopy indicate that glasses processed on Earth and in microgravity exhibit similar atomic structures, with only subtle differences that are consistent with compositional variations of ~2 mol. % Nd2O3. The glass atomic network contains a mixture of corner- and edge-sharing Ti-O polyhedra, and the fraction of edge-sharing arrangements decreases with increasing Nd2O3 content. X-ray tomography and electron microscopy of crystalline products reveal substantial differences in microstructure, grain size, and crystalline phases, which arise from differences in the melt processes.

2.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236195

RESUMO

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

3.
NPJ Microgravity ; 9(1): 38, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225716

RESUMO

A new method for quantifying facility performance has been discussed in this study that encompasses uncertainties associated with thermophysical property measurement. Four key thermophysical properties: density, volumetric thermal expansion coefficient, surface tension, and viscosity of liquid Au have been measured in microgravity environment using two different levitation facilities. Levitation experiments were conducted using the Electrostatic Levitation Furnace (ELF) onboard the ISS in Argon and air, and the TEMPUS Electromagnetic Levitation (EML) facility on a Novespace Zero-G aircraft parabolic flight in Argon. The traditional Maximum Amplitude method was augmented through the use of Frequency Crossover method to identify the natural frequency for oscillations induced on a molten sample during Faraday forcing in ESL. The EML tests were conducted using a pulse excitation method where two techniques, one imaging and one non-imaging, were used to study surface oscillations. The results from both facilities are in excellent agreement with the published literature values. A detailed study of the accuracy and precision of the measured values has also been presented in this work to evaluate facility performance.

4.
NPJ Microgravity ; 7(1): 10, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750800

RESUMO

The Faraday forcing method in levitated liquid droplets has recently been introduced as a method for measuring surface tension using resonance. By subjecting an electrostatically levitated liquid metal droplet to a continuous, oscillatory, electric field, at a frequency nearing that of the droplet's first principal mode of oscillation (known as mode 2), the method was previously shown to determine surface tension of materials that would be particularly difficult to process by other means, e.g., liquid metals and alloys. It also offers distinct advantages in future work involving high viscosity samples because of the continuous forcing approach. This work presents (1) a benchmarking experimental method to measure surface tension by excitation of the second principal mode of oscillation (known as mode 3) in a levitated liquid droplet and (2) a more rigorous quantification of droplet excitation using a projection method. Surface tension measurements compare favorably to literature values for Zirconium, Inconel 625, and Rhodium, using both modes 2 and 3. Thus, this new method serves as a credible, self-consistent benchmarking technique for the measurement of surface tension.

5.
Nat Commun ; 10(1): 961, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814502

RESUMO

Bioinspired ceramics with micron-scale ceramic "bricks" bonded by a metallic "mortar" are projected to result in higher strength and toughness ceramics, but their processing is challenging as metals do not typically wet ceramics. To resolve this issue, we made alumina structures using rapid pressureless infiltration of a zirconium-based bulk-metallic glass mortar that reactively wets the surface of freeze-cast alumina preforms. The mechanical properties of the resulting Al2O3 with a glass-forming compliant-phase change with infiltration temperature and ceramic content, leading to a trade-off between flexural strength (varying from 89 to 800 MPa) and fracture toughness (varying from 4 to more than 9 MPa·m½). The high toughness levels are attributed to brick pull-out and crack deflection along the ceramic/metal interfaces. Since these mechanisms are enabled by interfacial failure rather than failure within the metallic mortar, the potential for optimizing these bioinspired materials for damage tolerance has still not been fully realized.

6.
Paediatr Anaesth ; 27(5): 516-523, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28198572

RESUMO

BACKGROUND: Ultrasound-guided rectus sheath block and local anesthetic infiltration are the standard options to improve postoperative pain for children undergoing surgery with a midline incision. However, there is no study comparing the effect of ultrasound-guided rectus sheath block with local anesthetic infiltration for children undergoing laparoscopic surgery. AIMS: The aim of this trial was to compare the onset of ultrasound-guided rectus sheath block with that of local anesthetic infiltration for laparoscopic percutaneous extraperitoneal closure in children. METHODS: We performed an observer-blinded, randomized, prospective trial. Enrolled patients were assigned to either an ultrasound-guided rectus sheath block group or a local anesthetic infiltration group. The ultrasound-guided rectus sheath block group (n = 17) received ultrasound-guided rectus sheath block with 0.2 ml·kg-1 of 0.375% ropivacaine per side in the posterior rectus sheath compartment. The local anesthetic infiltration group (n = 17) received local anesthetic infiltration with 0.2 ml·kg-1 of 0.75% ropivacaine. The Face, Legs, Activity, Cry, and Consolability (FLACC) pain scores were recorded at 0, 30, 60 min after arrival at the postanesthesia care unit. RESULTS: Of the 37 patients enrolled in this study, 34 completed the study protocol. A significant difference in the pain scale between the ultrasound-guided rectus sheath block group and local anesthetic infiltration group was found at 0 min (median: 0, interquartile range [IQR]: 0-1.5, vs median: 1, IQR 0-5, confidence interval of median [95% CI]: 0-3, P = 0.048), but no significant difference was found at 30 min (median: 1, IQR: 0-4 vs median: 6, IQR: 0-7, 95% CI: 0-5, P = 0.061), or 60 min (median: 0, IQR: 0-2 vs median: 1, IQR: 0-3, 95% CI: -1 to 1, P = 0.310). No significant difference was found in anesthesia time between the ultrasound-guided rectus sheath block and local anesthetic infiltration groups. No procedure-related complications were observed in either group. CONCLUSION: Ultrasound-guided rectus sheath block is a quicker way to control postoperative pain for pediatric patients undergoing laparoscopic extraperitoneal closure than local anesthetic infiltration, and thus may provide a clinical benefit.


Assuntos
Analgesia/métodos , Anestesia Local/métodos , Laparoscopia/métodos , Bloqueio Nervoso/métodos , Ultrassonografia de Intervenção/métodos , Amidas , Analgesia/efeitos adversos , Anestésicos Locais , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Bloqueio Nervoso/efeitos adversos , Medição da Dor/efeitos dos fármacos , Estudos Prospectivos , Ropivacaina
7.
Nat Commun ; 5: 5892, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25520236

RESUMO

The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia-Thornton number-number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr-O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr-O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid.

8.
J Crit Care ; 28(4): 534.e1-5, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23337480

RESUMO

PURPOSE: The aim of this study was to determine whether the relative change in the end-expiratory lung volume (EELV) obtained by the recruitment maneuver (RM) can serve as an indicator of the change in the P/F ratio. MATERIALS AND METHODS: The effects of the intermittent stepwise increases in the RM (peak inspiratory pressure, 45, 50, and 55 cm H2O) were compared in 21 patients with atelectasis under mechanical ventilation. The EELV, the ratio of arterial oxygen concentration to the fraction of inspired oxygen P/F ratio, and relative change rate (Δ) in these parameters were evaluated after each RM. RESULTS: A greater improvement in the EELV (1157 ± 344 mL vs 1469 ± 396 mL) and P/F ratio (250 ± 99 vs 320 ± 92) was observed after the RM. The ΔEELV was correlated with the ΔP/F ratio (ρ = 0.73, P < .01) and was identified as an accurate predictor of the improvement of the ΔP/F ratio by the receiver operating characteristic curve (the area under the curve, 0.93; P < .01). CONCLUSIONS: These results suggest that the ΔEELV obtained by intermittent stepwise RM can serve as an indicator of the change in the P/F ratio.


Assuntos
Medidas de Volume Pulmonar , Atelectasia Pulmonar/fisiopatologia , Atelectasia Pulmonar/terapia , Idoso , Análise de Variância , Feminino , Capacidade Residual Funcional , Humanos , Complacência Pulmonar , Masculino , Oxigênio/sangue , Seleção de Pacientes , Curva ROC , Respiração Artificial , Mecânica Respiratória
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 1): 051605, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181428

RESUMO

Ice crystal growth experiments in heavy water were carried out under microgravity to investigate the morphological transition from a disk crystal to a dendrite. Surprisingly, however, no transition was observed, namely, the disk crystal or dendrite maintained its shape throughout the experiments, unlike the results obtained on the ground. Therefore, we introduce a growth model to understand disk growth. The Gibbs-Thomson effect is taken into account as a stabilization mechanism. The model is numerically solved by varying both an interfacial tension of the prism plane and supercooling so that the final sizes of the crystals can become almost the same to determine the interfacial tension. The results are compared with the typical experimental ones and thus the interfacial tension is estimated to be 20 mJ/m(2). Next, the model is solved under two supercooling conditions by using the estimated interfacial tension to understand stable growth. Comparisons between the numerical and experimental results show that our model explains well the microgravity experiments. It is also found that the experimental setup has the capability of controlling temperature on the order of 1/100 K.

10.
Rev Sci Instrum ; 80(1): 013906, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19191446

RESUMO

Electrostatic levitators use strong electric fields to levitate and accurately position a sample against gravity. In this study, the effects of the electric field are investigated with regard to viscosity measurements conducted with the oscillating drop method. The effects of the external field on viscosity measurements are experimentally confirmed by changing the sample size. Moreover, a numerical simulation based on a simple mass-spring-damper system can reproduce the experimental observations. Based on the above results, measurement procedures are improved. These help to minimize the effect of the positioning force and to increase the accuracy of the viscosity measurements.

11.
Rev Sci Instrum ; 78(2): 026102, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17578151

RESUMO

A compact electrostatic levitator was developed for the structural analysis of high-temperature liquids by x-ray diffraction methods. The size of the levitator was 200 mm in diameter and 200 mm in height and can be set up on a two axis diffractometer with a laboratory x-ray source, which is very convenient in performing structural measurements of high-temperature liquids. In particular, since the laboratory x-ray source allows a great amount of user time, preliminary or challenging experiments can be performed with trial and error, which prepares and complements synchrotron x-ray experiments. The present small apparatus also provides the advantage of portability and facility of setting. To demonstrate the capability of this electrostatic levitator, the static structure factors of alumina and silicon samples in their liquid phases were successfully measured.

13.
Ann N Y Acad Sci ; 1027: 464-73, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15644375

RESUMO

The National Space Development Agency of Japan has recently developed several electrostatic levitation furnaces and implemented new techniques and procedures for property measurement, solidification studies, and atomic structure research. In addition to the contamination-free environment for undercooled and liquid metals and semiconductors, the newly developed facilities possess the unique capabilities of handling ceramics and high vapor pressure materials, reducing processing time, and imaging high luminosity samples. These are exemplified in this paper with the successful processing of BaTiO(3). This allowed measurement of the density of high temperature solid, liquid, and undercooled phases. Furthermore, the material resulting from containerless solidification consisted of micrometer-size particles and a glass-like phase exhibiting a giant dielectric constant exceeding 100,000.


Assuntos
Eletricidade Estática , Bário/química , Cerâmica/química , Cristalização , Cristalografia , Fenômenos Físicos , Física , Voo Espacial , Temperatura , Fatores de Tempo , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...