Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 111(2): 432-439, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478755

RESUMO

Large amounts of ATP are produced in mitochondria especially in the brain and heart, where energy consumption is high compared with other organs. Thus, a decrease in ATP production in such organs could be a cause of many diseases such as neurodegenerative diseases and heart disease. Based on thus assumption, increasing intracellular ATP production in such organs could be a therapeutic strategy. In this study, we report on the delivery of vitamin B1, a coenzyme that activates the tricarboxylic acid (TCA) cycle, to the inside of mitochondria. Since the TCA cycle is responsible for ATP production, we hypothesized delivering vitamin B1 to mitochondria would enhance ATP production. To accomplish this, we used a mitochondrial targeted liposome a "MITO-Porter" as the carrier. Using SH-SY5Y cells, a model neuroblast, cellular uptake and intracellular localization were analyzed using flow cytometry and confocal laser scanning microscopy. The optimized MITO-Porter containing encapsulated vitamin B1 (MITO-Porter (VB1)) was efficiently accumulated in mitochondria of SH-SY5Y cells. Further studies confirmed that the level of ATP production after the MITO-Porter (VB1) treatment was significantly increased as compared to a control group that was treated with naked vitamin B1. This study provides the potential for an innovative therapeutic strategy in which the TCA cycle is activated, thus enhancing ATP production.


Assuntos
Sistemas de Liberação de Medicamentos , Tiamina , Trifosfato de Adenosina , Humanos , Mitocôndrias , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...