Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6595): 857-860, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35587979

RESUMO

In plants, many invading microbial pathogens are recognized by cell-surface pattern recognition receptors, which induce defense responses. Here, we show that the ceramide Phytophthora infestans-ceramide D (Pi-Cer D) from the plant pathogenic oomycete P. infestans triggers defense responses in Arabidopsis. Pi-Cer D is cleaved by an Arabidopsis apoplastic ceramidase, NEUTRAL CERAMIDASE 2 (NCER2), and the resulting 9-methyl-branched sphingoid base is recognized by a plasma membrane lectin receptor-like kinase, RESISTANT TO DFPM-INHIBITION OF ABSCISIC ACID SIGNALING 2 (RDA2). 9-Methyl-branched sphingoid base is specific to microbes and induces plant immune responses by physically interacting with RDA2. Loss of RDA2 or NCER2 function compromised Arabidopsis resistance against an oomycete pathogen. Thus, we elucidated the recognition mechanisms of pathogen-derived lipid molecules in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ceramidas , Interações Hospedeiro-Patógeno , Ceramidase Neutra , Phytophthora infestans , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ceramidas/metabolismo , Ceramidase Neutra/genética , Ceramidase Neutra/metabolismo , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo
2.
Mol Genet Genomics ; 271(1): 50-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14639476

RESUMO

Proteins derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, which performs plant-type oxygenic photosynthesis, are suitable for biochemical, biophysical and X-ray crystallographic studies. We found that T. elongatus displays natural transformation, and we established a simple and efficient protocol for transferring exogenous DNAs into the organism's genome. We obtained transformants directly on selective agar plates without having to amplify them prior to plating. We constructed several targeting vectors that enabled us to insert exogenous DNAs into specific sites without disrupting endogenous genes and operons. We also developed a new selectable marker gene for T. elongatus by optimizing the codons of the gene encoding a kanamycin nucleotidyltransferase derived from the thermophilic bacterium Bacillus stearothermophilus. This synthetic gene enabled us to select transformants as kanamycin-resistant colonies on agar plates at 52 degrees C. Optimization of the conditions for natural transformation resulted in a transformation efficiency of up to 1.7 x 10(3) transformants per microg of DNA. The exogenous DNAs were integrated stably into the targeted sites of the T. elongatus genome via homologous recombination by double crossovers.


Assuntos
Cianobactérias/genética , Técnicas de Transferência de Genes , Transformação Genética , DNA Bacteriano/genética , Eletroporação , Genes Bacterianos , Vetores Genéticos , Temperatura Alta , Reação em Cadeia da Polimerase
3.
FEBS Lett ; 496(2-3): 86-90, 2001 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-11356188

RESUMO

kaiABC, a gene cluster, encodes KaiA, KaiB and KaiC proteins that are essential to circadian rhythms in the unicellular cyanobacterium Synechococcus sp. strain PCC 7942. Kai proteins can interact with each other in all possible combinations. This study identified two KaiA-binding domains (C(KABD1) and C(KABD2)) in KaiC at corresponding regions of its duplicated structure. Clock mutations on the two domains and kaiA altered the strength of C(KABD)-KaiA interactions assayed by the yeast two-hybrid system. Thus, interaction between KaiA and KaiC through C(KABD1) and C(KABD2) is likely important for circadian timing in the cyanobacterium.


Assuntos
Proteínas de Bactérias/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Glutationa Transferase/metabolismo , Modelos Biológicos , Modelos Moleculares , Família Multigênica , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Nucleic Acids Res ; 28(12): 2353-62, 2000 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10871367

RESUMO

Photolyase is a DNA repair enzyme that reverses UV-induced photoproducts in DNA in a light-dependent manner. Recently, photolyase homologs were identified in higher eukaryotes. These homologs, termed crypto-chromes, function as blue light photoreceptors or regulators of circadian rhythm. In contrast, most bacteria have only a single photolyase or photolyase-like gene. Unlike other microbes, the chromosome of the cyanobacterium SYNECHOCYSTIS: sp. PCC6803 contains two ORFs (slr0854 and sll1629) with high similarities to photolyases. We have characterized both genes. The slr0854 gene product exhibited specific, light-dependent repair activity for a cyclo-butane pyrimidine dimer (CPD), whereas the sll1629 gene product lacks measurable affinity for DNA in vitro. Disruption of either slr0854 or sll1629 had little or no effect on the growth rate of the cyanobacterium. A mutant lacking the slr0854 gene showed severe UV sensitivity, in contrast to a mutant lacking sll1629. Phylogenetic analysis showed that sll1629 is more closely related to the cryptochromes than photolyases. We conclude that sll1629 is a bacterial cryptochrome. To our knowledge, this is the first description of a bacterial cryptochrome.


Assuntos
Cianobactérias/genética , DNA Bacteriano/efeitos da radiação , Desoxirribodipirimidina Fotoliase/genética , Proteínas de Drosophila , Proteínas do Olho , Flavoproteínas/genética , Células Fotorreceptoras de Invertebrados , Raios Ultravioleta , Sequência de Bases , Criptocromos , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/efeitos da radiação , Reparo do DNA , DNA Bacteriano/genética , Escuridão , Genes Bacterianos , Luz , Dados de Sequência Molecular , Filogenia , Receptores Acoplados a Proteínas G
5.
Cell ; 101(2): 223-33, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10786837

RESUMO

Both regulated expression of the clock genes kaiA, kaiB, and kaiC and interactions among the Kai proteins are proposed to be important for circadian function in the cyanobacterium Synechococcus sp. strain PCC 7942. We have identified the histidine kinase SasA as a KaiC-interacting protein. SasA contains a KaiB-like sensory domain, which appears sufficient for interaction with KaiC. Disruption of the sasA gene lowered kaiBC expression and dramatically reduced amplitude of the kai expression rhythms while shortening the period. Accordingly, sasA disruption attenuated circadian expression patterns of all tested genes, some of which became arrhythmic. Continuous sasA overexpression eliminated circadian rhythms, whereas temporal overexpression changed the phase of kaiBC expression rhythm. Thus, SasA is a close associate of the cyanobacterial clock that is necessary to sustain robust circadian rhythms.


Assuntos
Proteínas de Bactérias/metabolismo , Ritmo Circadiano/fisiologia , Cianobactérias/enzimologia , Fosfotransferases , Proteínas Quinases/metabolismo , Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Escuridão , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Iluminação , Luciferases/genética , Dados de Sequência Molecular , Mutagênese/fisiologia , Proteínas Quinases/genética , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
6.
Proc Natl Acad Sci U S A ; 97(1): 495-9, 2000 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-10618446

RESUMO

A negative feedback control of kaiC expression by KaiC protein has been proposed to generate a basic oscillation of the circadian clock in the cyanobacterium Synechococcus sp. PCC 7942. KaiC has two P loops or Walker's motif As, that are potential ATP-/GTP-binding motifs and DXXG motifs conserved in various GTP-binding proteins. Herein, we demonstrate that in vitro KaiC binds ATP and, with lower affinity, GTP. Point mutation by site-directed mutagenesis of P loop 1 completely nullified the circadian rhythm of kaiBC expression and markedly reduced ATP-binding activity. Moreover, KaiC can be autophosphorylated in vitro. These results suggest that the nucleotide-binding activity of KaiC plays important roles in the generation of circadian oscillation in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ritmo Circadiano/fisiologia , Cianobactérias/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Relógios Biológicos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Regulação Bacteriana da Expressão Gênica , Guanosina Trifosfato/metabolismo , Medições Luminescentes , Mutagênese Sítio-Dirigida , Fosforilação , Mutação Puntual , Ligação Proteica , Raios Ultravioleta
7.
Bioessays ; 22(1): 10-5, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10649285

RESUMO

A circadian clock, with physiological characteristics similar to those of eukaryotes, functions in the photosynthetic prokaryote, cyanobacteria. The molecular mechanism of this clock has been efficiently dissected using a luciferase reporter gene that reports the status of the clock. A circadian clock gene cluster, kaiABC, has been cloned via rhythm mutants of cyanobacterium, Synechococcus, and many clock mutations mapped to the three kai genes. Although kai genes do not share any homology with clock genes so far identified in eukaryotes, analysis of their expression suggests that a negative feedback control of kaiC expression by KaiC generates the circadian oscillation and that KaiA functions as a positive factor to sustain this oscillation. BioEssays 22:10-15, 2000.


Assuntos
Ritmo Circadiano/fisiologia , Cianobactérias/fisiologia , Relógios Biológicos , Ritmo Circadiano/genética , Cianobactérias/genética , Genes Bacterianos , Família Multigênica , Fotossíntese
8.
Trends Plant Sci ; 4(5): 171-176, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10322556

RESUMO

Classical research on the circadian rhythms of plants helped to demonstrate that all living organisms utilize circadian clocks to adapt their day-night cycles and that the clock is the basis for photoperiodic time measurements. Molecular models for the circadian oscillator have now been elucidated in Drosophila, Neurospora, mice and cyanobacteria. All share a similar feedback structure, but key proteins in each of the oscillators are different. A plant clock model has yet to be proposed, but clock mutants of Arabidopsis are expected to reveal key proteins in the mechanism. Here we discuss how a self-sustained oscillation is established in eukaryotic and prokaryotic models, and the polyphyletic evolution of these clock systems.

9.
EMBO J ; 18(5): 1137-45, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10064581

RESUMO

The kai gene cluster, which is composed of three genes, kaiA, kaiB and kaiC, is essential for the generation of circadian rhythms in the unicellular cyanobacterium Synechococcus sp. strain PCC 7942. Here we demonstrate the direct association of KaiA, KaiB and KaiC in yeast cells using the two-hybrid system, in vitro and in cyanobacterial cells. KaiC enhanced KaiA-KaiB interaction in vitro and in yeast cells, suggesting that the three Kai proteins were able to form a heteromultimeric complex. We also found that a long period mutation kaiA1 dramatically enhanced KaiA-KaiB interaction in vitro. Thus, direct protein-protein association among the Kai proteins may be a critical process in the generation of circadian rhythms in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ritmo Circadiano , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Regulação Bacteriana da Expressão Gênica/genética , Genes Reporter , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
10.
Science ; 281(5382): 1519-23, 1998 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-9727980

RESUMO

Cyanobacteria are the simplest organisms known to have a circadian clock. A circadian clock gene cluster kaiABC was cloned from the cyanobacterium Synechococcus. Nineteen clock mutations were mapped to the three kai genes. Promoter activities upstream of the kaiA and kaiB genes showed circadian rhythms of expression, and both kaiA and kaiBC messenger RNAs displayed circadian cycling. Inactivation of any single kai gene abolished these rhythms and reduced kaiBC-promoter activity. Continuous kaiC overexpression repressed the kaiBC promoter, whereas kaiA overexpression enhanced it. Temporal kaiC overexpression reset the phase of the rhythms. Thus, a negative feedback control of kaiC expression by KaiC generates a circadian oscillation in cyanobacteria, and KaiA sustains the oscillation by enhancing kaiC expression.


Assuntos
Proteínas de Bactérias/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Clonagem Molecular , Cianobactérias/fisiologia , Retroalimentação , Genes Bacterianos , Genes Reporter , Luminescência , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Mutação , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão , Transcrição Gênica
11.
J Bacteriol ; 180(8): 2167-74, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9555901

RESUMO

We cloned the pS1K1 plasmid in the process of apparently "complementing" a circadian clock mutant of cyanobacterium Synechococcus sp. strain PCC 7942, SP22, which has a 22-h period (T. Kondo, N. F. Tsinoremas, S. S. Golden, C. H. Johnson, S. Kutsuna, and M. Ishiura, Science 266:1233-1236, 1994). Sequence analysis revealed that SP22 did not have a mutation in the genomic DNA segment carried on pS1K1, and the sp22 mutation was later found in a recently cloned new clock gene, kaiC. Therefore, the period-extender gene pex that was carried on pS1K1 was a suppressor gene for the sp22 mutation. The pex gene encoded a protein of 148 amino acid residues. No meaningful homologs were found in DNA or protein databases including the Synechocystis genome database. The pex gene was transcribed from 129 and 164 bp upstream of the translation initiation codon as 0.6-kb transcripts. The Pex protein was detected as a fusion protein with a molecular mass of 15 kDa by the epitope tag fusion method using a c-Myc epitope tag. Disruption of the pex gene in wild-type cells shortened the period of the rhythms by 1 h, although it did not affect other properties of the rhythms, whereas its overexpression extended the period by 3 h with a concomitant reduction in the amplitude of the rhythms. In various clock mutants examined, overexpression caused arrhythmicity. Thus, Pex is likely to function as a modifier of the circadian clock in Synechococcus.


Assuntos
Proteínas de Bactérias/genética , Ritmo Circadiano/genética , Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Genes Supressores , Regiões Promotoras Genéticas , Transcrição Gênica , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Sequência de Bases , Cianobactérias/genética , Genes Bacterianos , Medições Luminescentes , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/biossíntese , Mapeamento por Restrição , Deleção de Sequência , Fatores de Tempo
12.
J Bacteriol ; 179(18): 5751-5, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9294431

RESUMO

The cyanobacterium Synechocystis sp. strain PCC 6803 exhibited circadian rhythms in complete darkness. To monitor a circadian rhythm of the Synechocystis cells in darkness, we introduced a PdnaK1::luxAB gene fusion (S. Aoki, T. Kondo, and M. Ishiura, J. Bacteriol. 177:5606-5611, 1995), which was composed of a promoter region of the Synechocystis dnaK1 gene and a promoterless bacterial luciferase luxAB gene set, as a reporter into the chromosome of a dark-adapted Synechocystis strain. The resulting dnaK1-reporting strain showed bioluminescence rhythms with a period of 25 h (on agar medium supplemented with 5 mM glucose) for at least 7 days in darkness. The rhythms were reset by 12-h-light-12-h-dark cycles, and the period of the rhythms was temperature compensated for between 24 and 31 degrees C. These results indicate that light is not necessary for the oscillation of the circadian clock in Synechocystis.


Assuntos
Cianobactérias/fisiologia , Medições Luminescentes , Ritmo Circadiano , Escuridão , Temperatura
13.
Science ; 275(5297): 224-7, 1997 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-8985018

RESUMO

The long-standing supposition that the biological clock cannot function in cells that divide more rapidly than the circadian cycle was investigated. During exponential growth in which the generation time was 10 hours, the profile of bioluminescence from a reporter strain of the cyanobacterium Synechococcus (species PCC 7942) matched a model based on the assumption that cells proliferate exponentially and the bioluminescence of each cell oscillates in a cosine fashion. Some messenger RNAs showed a circadian rhythm in abundance during continuous exponential growth with a doubling time of 5 to 6 hours. Thus, the cyanobacterial circadian clock functions in cells that divide three or more times during one circadian cycle.


Assuntos
Ritmo Circadiano , Cianobactérias/fisiologia , Divisão Celular , Cianobactérias/citologia , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Luminescência , Mutação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transformação Bacteriana
14.
Mol Microbiol ; 21(1): 5-11, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8843429

RESUMO

Prokaryotes have long been thought incapable of expressing circadian (daily) rhythms. Recently, however, such biological 'clocks' have been discovered in several species of cyanobacteria. These endogenous timekeepers control gene expression on a global level in cyanobacteria. Even in cyanobacterial cultures that are growing with average doubling times more rapid than one per 24 h, the circadian clock controls gene expression and cell division. We have isolated mutants of the cyanobacterial circadian pacemaker and are currently characterizing the loci responsible for their altered period phenotypes.


Assuntos
Ritmo Circadiano/fisiologia , Células Procarióticas/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Ritmo Circadiano/genética , Cianobactérias/citologia , Cianobactérias/genética , Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica
15.
EMBO J ; 15(10): 2488-95, 1996 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-8665856

RESUMO

We isolated mutants affected in the circadian expression of the psbAI gene in Synechococcus sp. strain PCC 7942 using a strategy that tags the genomic locus responsible for the mutant phenotype. The search identified one short period (22 h) mutant (M2) and two low amplitude mutants, one of which showed apparent arhythmia (M11) and one that was still clearly rhythmic (M16). We characterized the disrupted locus of the low amplitude but still rhythmic mutant (M16) as the rpoD2 gene, a member of a gene family that encodes sigma70-like transcription factors in Synechococcus. We also inactivated rpoD2 in a number of reporter strains and showed that the circadian expression of some genes is not modified by the loss of this sigma factor. Therefore, we conclude that rpoD2 is a component of an output pathway of the biological clock that affects the circadian expression of a subset of genes in Synechococcus. This work demonstrates a direct link between a transcription factor and the manifestation of circadian gene expression.


Assuntos
Proteínas de Bactérias/fisiologia , Ritmo Circadiano/genética , Cianobactérias/genética , RNA Polimerases Dirigidas por DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Proteínas Recombinantes de Fusão/biossíntese , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator sigma/genética
16.
J Bacteriol ; 177(19): 5606-11, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7559349

RESUMO

The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803.


Assuntos
Ritmo Circadiano , Cianobactérias/genética , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/genética , Sequência de Bases , Relógios Biológicos , Cianobactérias/fisiologia , Genes Bacterianos/genética , Genes Reporter/genética , Luciferases/genética , Medições Luminescentes , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Temperatura , Transcrição Gênica/genética
17.
Genes Dev ; 9(12): 1469-78, 1995 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-7601351

RESUMO

We wanted to identify genes that are controlled by the circadian clock in the prokaryotic cyanobacterium Synechococcus sp. strain PCC 7942. To use luciferase as a reporter to monitor gene expression, bacterial luciferase genes (luxAB) were inserted randomly into the Synechococcus genome by conjugation with Escherichia coli and subsequent homologous recombination. The resulting transformed clones were then screened for bioluminescence using a new developed cooled-CCD camera system. We screened approximately 30,000 transformed Synechococcus colonies and recovered approximately 800 clones whose bioluminescence was bright enough to be easily monitored by the screening apparatus. Unexpectedly, the bioluminescence expression patterns of almost all of these 800 colonies clearly manifested circadian rhythmicity. These rhythms exhibited a range of waveforms and amplitudes, and they also showed a variety of phase relationships. We also found bioluminescence rhythms expressed by cyanobacterial colonies in which the luciferase gene set was coupled to the promoters of several known genes. Together, these results indicate that control of gene expression by circadian clocks may be more widespread than expected thus far. Moreover, our results show that screening organisms in which promoterless luciferase genes have been inserted randomly throughout the genome by homologous recombination provides an extremely sensitive method to explore differential gene expression.


Assuntos
Ritmo Circadiano , Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medições Luminescentes , Fotomicrografia/instrumentação , Cianobactérias/genética , Escherichia coli , Biblioteca Gênica , Genes Reporter , Luciferases/biossíntese , Luciferases/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Recombinação Genética
18.
J Bacteriol ; 177(8): 2080-6, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7536731

RESUMO

To allow continuous monitoring of the circadian clock in cyanobacteria, we previously created a reporter strain (AMC149) of Synechococcus sp. strain PCC 7942 in which the promoter of the psbAI gene was fused to Vibrio harveyi luciferase structural genes (luxAB) and integrated into the chromosome. Northern (RNA) hybridization and immunoblot analyses were performed to examine changes in abundance of the luxAB mRNA, the native psbAI mRNA, and the luciferase protein to determine whether bioluminescence is an accurate reporter of psbAI promoter activity in AMC149. Under constant light conditions, the mRNA abundances of both luxAB and psbAI oscillated with a period of approximately 24 h for at least 2 days. The expression of these two genes following the same pattern: both mRNAs peaked in the subjective morning, and their troughs occurred near the end of the subjective night. The amount of luciferase protein also oscillated with a period of approximately 24 h, and the protein rhythm is in phase with the bioluminescence rhythm. The rhythm of the luciferase mRNA phase-leads the rhythms of luciferase protein and in vivo bioluminescence by several hours. Comparable results were obtained with a short-period mutant of AMC149. Together, these results indicate that the bioluminescence rhythm in AMC149 is due primarily to circadian oscillation of psbAI promoter activity in this cyanobacterium.


Assuntos
Ritmo Circadiano/genética , Cianobactérias/genética , Genes Bacterianos , Luciferases/genética , Ritmo Circadiano/fisiologia , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Luciferases/metabolismo , Medições Luminescentes , Mutação , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vibrio/enzimologia , Vibrio/genética
20.
Science ; 266(5188): 1233-6, 1994 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-7973706

RESUMO

A diverse set of circadian clock mutants was isolated in a cyanobacterial strain that carries a bacterial luciferase reporter gene attached to a clock-controlled promoter. Among 150,000 clones of chemically mutagenized bioluminescent cells, 12 mutants were isolated that exhibit a broad spectrum of periods (between 16 and 60 hours), and 5 mutants were found that show a variety of unusual patterns, including arrhythmia. These mutations appear to be clock-specific. Moreover, it was demonstrated that in this cyanobacterium it is possible to clone mutant genes by complementation, which provides a means to genetically dissect the circadian mechanism.


Assuntos
Ritmo Circadiano/genética , Cianobactérias/genética , Genes Bacterianos , Clonagem Molecular , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Escuridão , Teste de Complementação Genética , Luz , Medições Luminescentes , Mutagênese , Mutação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA