Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314197

RESUMO

We studied the function, development and aging of the adult nervous system in the colonial tunicate Botryllus schlosseri. Adults, termed zooids, are filter-feeding individuals. Sister zooids group together to form modules, and modules, in turn, are linked by a shared vascular network to form a well-integrated colony. Zooids undergo a weekly cycle of regression and renewal during which mature zooids are replaced by developing buds. The zooid brain matures and degenerates on this 7-day cycle. We used focal extracellular recording and video imaging to explore brain activity in the context of development and degeneration and to examine the contributions of the nervous system and vascular network to behavior. Recordings from the brain revealed complex firing patterns arising both spontaneously and in response to stimulation. Neural activity increases as the brain matures and declines thereafter. Motor behavior follows the identical time course. The behavior of each zooid is guided predominantly by its individual brain, but sister zooids can also exhibit synchronous motor behavior. The vascular network also generates action potentials that are largely independent of neural activity. In addition, the entire vascular network undergoes slow rhythmic contractions that appear to arise from processes endogenous to vascular epithelial cells. We found that neurons in the brain and cells of the vascular network both express multiple genes for voltage-gated Na+ and Ca2+ ion channels homologous (based on sequence) to mammalian ion channel genes.


Assuntos
Urocordados , Humanos , Animais , Urocordados/fisiologia , Envelhecimento , Encéfalo , Mamíferos
2.
Proc Natl Acad Sci U S A ; 119(29): e2203032119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858312

RESUMO

Colonial tunicates are marine organisms that possess multiple brains simultaneously during their colonial phase. While the cyclical processes of neurogenesis and neurodegeneration characterizing their life cycle have been documented previously, the cellular and molecular changes associated with such processes and their relationship with variation in brain morphology and individual (zooid) behavior throughout adult life remains unknown. Here, we introduce Botryllus schlosseri as an invertebrate model for neurogenesis, neural degeneration, and evolutionary neuroscience. Our analysis reveals that during the weekly colony budding (i.e., asexual reproduction), prior to programmed cell death and removal by phagocytes, decreases in the number of neurons in the adult brain are associated with reduced behavioral response and significant change in the expression of 73 mammalian homologous genes associated with neurodegenerative disease. Similarly, when comparing young colonies (1 to 2 y of age) to those reared in a laboratory for ∼20 y, we found that older colonies contained significantly fewer neurons and exhibited reduced behavioral response alongside changes in the expression of 148 such genes (35 of which were differentially expressed across both timescales). The existence of two distinct yet apparently related neurodegenerative pathways represents a novel platform to study the gene products governing the relationship between aging, neural regeneration and degeneration, and loss of nervous system function. Indeed, as a member of an evolutionary clade considered to be a sister group of vertebrates, this organism may be a fundamental resource in understanding how evolution has shaped these processes across phylogeny and obtaining mechanistic insight.


Assuntos
Evolução Biológica , Doenças Neurodegenerativas , Urocordados , Animais , Expressão Gênica , Doenças Neurodegenerativas/genética , Reprodução Assexuada , Urocordados/genética
3.
Cell Rep ; 34(4): 108681, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503429

RESUMO

Colonial tunicates are the only chordate that possess two distinct developmental pathways to produce an adult body: either sexually through embryogenesis or asexually through a stem cell-mediated renewal termed blastogenesis. Using the colonial tunicate Botryllus schlosseri, we combine transcriptomics and microscopy to build an atlas of the molecular and morphological signatures at each developmental stage for both pathways. The general molecular profiles of these processes are largely distinct. However, the relative timing of organogenesis and ordering of tissue-specific gene expression are conserved. By comparing the developmental pathways of B. schlosseri with other chordates, we identify hundreds of putative transcription factors with conserved temporal expression. Our findings demonstrate that convergent morphology need not imply convergent molecular mechanisms but that it showcases the importance that tissue-specific stem cells and transcription factors play in producing the same mature body through different pathways.


Assuntos
Desenvolvimento Embrionário/genética , Reprodução Assexuada/genética , Desenvolvimento Sexual/genética , Urocordados/genética , Animais
4.
Nature ; 564(7736): 425-429, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518860

RESUMO

Haematopoiesis is an essential process that evolved in multicellular animals. At the heart of this process are haematopoietic stem cells (HSCs), which are multipotent and self-renewing, and generate the entire repertoire of blood and immune cells throughout an animal's life1. Although there have been comprehensive studies on self-renewal, differentiation, physiological regulation and niche occupation in vertebrate HSCs, relatively little is known about the evolutionary origin and niches of these cells. Here we describe the haematopoietic system of Botryllus schlosseri, a colonial tunicate that has a vasculature and circulating blood cells, and interesting stem-cell biology and immunity characteristics2-8. Self-recognition between genetically compatible B. schlosseri colonies leads to the formation of natural parabionts with shared circulation, whereas incompatible colonies reject each other3,4,7. Using flow cytometry, whole-transcriptome sequencing of defined cell populations and diverse functional assays, we identify HSCs, progenitors, immune effector cells and an HSC niche, and demonstrate that self-recognition inhibits allospecific cytotoxic reactions. Our results show that HSC and myeloid lineage immune cells emerged in a common ancestor of tunicates and vertebrates, and also suggest that haematopoietic bone marrow and the B. schlosseri endostyle niche evolved from a common origin.


Assuntos
Hematopoese , Sistema Hematopoético/citologia , Mamíferos/sangue , Filogenia , Urocordados/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Citotoxicidade Imunológica , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Celular , Isoantígenos/imunologia , Masculino , Mamíferos/anatomia & histologia , Células Mieloides/citologia , Células Mieloides/imunologia , Fagocitose/imunologia , Nicho de Células-Tronco , Transcriptoma/genética , Urocordados/anatomia & histologia , Urocordados/genética , Urocordados/imunologia
5.
Proc Natl Acad Sci U S A ; 113(23): 6520-5, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217570

RESUMO

In a primitive chordate model of natural chimerism, one chimeric partner is often eliminated in a process of allogeneic resorption. Here, we identify the cellular framework underlying loss of tolerance to one partner within a natural Botryllus schlosseri chimera. We show that the principal cell type mediating chimeric partner elimination is a cytotoxic morula cell (MC). Proinflammatory, developmental cell death programs render MCs cytotoxic and, in collaboration with activated phagocytes, eliminate chimeric partners during the "takeover" phase of blastogenic development. Among these genes, the proinflammatory cytokine IL-17 enhances cytotoxicity in allorecognition assays. Cellular transfer of FACS-purified MCs from allogeneic donors into recipients shows that the resorption response can be adoptively acquired. Transfer of 1 × 10(5) allogeneic MCs eliminated 33 of 78 (42%) recipient primary buds and 20 of 76 (20.5%) adult parental adult organisms (zooids) by 14 d whereas transfer of allogeneic cell populations lacking MCs had only minimal effects on recipient colonies. Furthermore, reactivity of transferred cells coincided with the onset of developmental-regulated cell death programs and disproportionately affected developing tissues within a chimera. Among chimeric partner "losers," severe developmental defects were observed in asexually propagating tissues, reflecting a pathologic switch in gene expression in developmental programs. These studies provide evidence that elimination of one partner in a chimera is an immune cell-based rejection that operates within histocompatible pairs and that maximal allogeneic responses involve the coordination of both phagocytic programs and the "arming" of cytotoxic cells.


Assuntos
Mórula/citologia , Urocordados/imunologia , Animais , Sequência de Bases , Morte Celular , Mórula/transplante , Quimeras de Transplante , Urocordados/citologia , Urocordados/genética
6.
PLoS One ; 9(5): e96434, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789338

RESUMO

Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis) of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA) will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.


Assuntos
Bases de Dados Genéticas , Urocordados/anatomia & histologia , Urocordados/embriologia , Animais , Ontologias Biológicas , Padronização Corporal , Software
7.
Science ; 341(6144): 384-7, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23888037

RESUMO

Histocompatibility is the basis by which multicellular organisms of the same species distinguish self from nonself. Relatively little is known about the mechanisms underlying histocompatibility reactions in lower organisms. Botryllus schlosseri is a colonial urochordate, a sister group of vertebrates, that exhibits a genetically determined natural transplantation reaction, whereby self-recognition between colonies leads to formation of parabionts with a common vasculature, whereas rejection occurs between incompatible colonies. Using genetically defined lines, whole-transcriptome sequencing, and genomics, we identified a single gene that encodes self-nonself and determines "graft" outcomes in this organism. This gene is significantly up-regulated in colonies poised to undergo fusion and/or rejection, is highly expressed in the vasculature, and is functionally linked to histocompatibility outcomes. These findings establish a platform for advancing the science of allorecognition.


Assuntos
Genes , Histocompatibilidade/genética , Urocordados/genética , Urocordados/imunologia , Alelos , Animais , Genoma , Genótipo , Tolerância Imunológica , Dados de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma , Regulação para Cima , Urocordados/fisiologia
8.
Elife ; 2: e00569, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23840927

RESUMO

Botryllus schlosseri is a colonial urochordate that follows the chordate plan of development following sexual reproduction, but invokes a stem cell-mediated budding program during subsequent rounds of asexual reproduction. As urochordates are considered to be the closest living invertebrate relatives of vertebrates, they are ideal subjects for whole genome sequence analyses. Using a novel method for high-throughput sequencing of eukaryotic genomes, we sequenced and assembled 580 Mbp of the B. schlosseri genome. The genome assembly is comprised of nearly 14,000 intron-containing predicted genes, and 13,500 intron-less predicted genes, 40% of which could be confidently parceled into 13 (of 16 haploid) chromosomes. A comparison of homologous genes between B. schlosseri and other diverse taxonomic groups revealed genomic events underlying the evolution of vertebrates and lymphoid-mediated immunity. The B. schlosseri genome is a community resource for studying alternative modes of reproduction, natural transplantation reactions, and stem cell-mediated regeneration. DOI:http://dx.doi.org/10.7554/eLife.00569.001.


Assuntos
Cordados/genética , Genoma , Animais , Cordados/classificação , Cordados/fisiologia , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reprodução
9.
Dev Cell ; 24(1): 76-88, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23260626

RESUMO

The mechanisms that sustain stem cells are fundamental to tissue maintenance. Here, we identify "cell islands" (CIs) as a niche for putative germ and somatic stem cells in Botryllus schlosseri, a colonial chordate that undergoes weekly cycles of death and regeneration. Cells within CIs express markers associated with germ and somatic stem cells and gene products that implicate CIs as signaling centers for stem cells. Transplantation of CIs induced long-term germline and somatic chimerism, demonstrating self-renewal and pluripotency of CI cells. Cell labeling and in vivo time-lapse imaging of CI cells reveal waves of migrations from degrading CIs into developing buds, contributing to soma and germline development. Knockdown of cadherin, which is highly expressed within CIs, elicited the migration of CI cells to circulation. Piwi knockdown resulted in regeneration arrest. We suggest that repeated trafficking of stem cells allows them to escape constraints imposed by the niche, enabling self-preservation throughout life.


Assuntos
Células Germinativas/citologia , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Urocordados/citologia , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Células Germinativas/fisiologia , Técnicas Imunoenzimáticas , Hibridização In Situ , Sondas RNA , Células-Tronco/fisiologia , Urocordados/genética , Urocordados/metabolismo
10.
Biol Bull ; 220(1): 57-70, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21385958

RESUMO

The colonial ascidian Botryllus schlosseri undergoes a histocompatibility reaction that can result in vascular fusion of distinct genotypes, creating a chimera. Chimerism has both potential benefits, such as an immediate increase in size that may enhance growth rates, and costs. For the latter, the presence of multiple genotypes in a chimera can lead to competition between genetically distinct stem cell lineages, resulting in complete replacement of somatic and germline tissues by a single genotype. Although fusion can occur at any point after metamorphosis, previous studies have focused on chimeras created from sexually mature adults, where no benefit to chimerism has been documented. Here we focus on the costs and benefits of fusion between juveniles, characterizing growth rates and patterns of somatic and germline chimerism after natural and controlled fusion events. We also compared outcomes between low- and high-density growth conditions, the latter more likely representative of what occurs in natural populations. We found that growth rates were density-dependent, and that only chimeras grew under high-density conditions. We also observed a positional component to a post-fusion event called resorption, indicating that extrinsic factors were important in this process. Patterns of germline and somatic chimerism and dominance in chimeras made from fused juveniles were equivalent to those after fusion of sexually mature adults, and there were no age-related differences in these processes. Finally, by using genetic markers that could retrospectively assign genotypes, we also found that the majority of individual testes in a chimera were clonally derived.


Assuntos
Urocordados/crescimento & desenvolvimento , Animais , Quimerismo
11.
Cell Stem Cell ; 3(4): 456-64, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18940736

RESUMO

Stem cell populations exist in "niches" that hold them and regulate their fate decisions. Identification and characterization of these niches is essential for understanding stem cell maintenance and tissue regeneration. Here we report on the identification of a novel stem cell niche in Botryllus schlosseri, a colonial urochordate with high stem cell-mediated developmental activities. Using in vivo cell labeling, engraftment, confocal microscopy, and time-lapse imaging, we have identified cells with stemness capabilities in the anterior ventral region of the Botryllus' endostyle. These cells proliferate and migrate to regenerating organs in developing buds and buds of chimeric partners but do not contribute to the germ line. When cells are transplanted from the endostyle region, they contribute to tissue development and induce long-term chimerism in allogeneic tissues. In contrast, cells from other Botryllus' regions do not show comparable stemness capabilities. Cumulatively, these results define the Botryllus' endostyle region as an adult somatic stem cell niche.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular/fisiologia , Nicho de Células-Tronco/fisiologia , Urocordados/crescimento & desenvolvimento , Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Animais , Movimento Celular , Proliferação de Células , Quimerismo , Genótipo , Microscopia Confocal , Morfogênese , Especificidade de Órgãos , Transplante de Células-Tronco , Tolerância ao Transplante , Urocordados/citologia
12.
FASEB J ; 21(7): 1335-44, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17289924

RESUMO

Embryogenesis and asexual reproduction are commonly considered to be coordinated developmental processes, which depend on accurate progression through a defined sequence of developmental stages. Here we report a peculiar developmental scenario in a simple chordate, Botryllus schlosseri, wherein a normal colony of individuals (zooids and buds) is regenerated from the vasculature (vascular budding) through a sequence of morphologically abnormal developmental stages. Vascular budding was induced by surgically removing buds and zooids from B. schlosseri colonies, leaving only the vasculature and the tunic that connects them. In vivo imaging and histological sections showed that the timing and morphology of developing structures during vascular budding deviated significantly from other asexual reproduction modes (the regular asexual reproduction mode in this organism and vascular budding in other botryllid species). Subsequent asexual reproduction cycles exhibited gradual regaining of normal developmental patterns, eventually leading to regeneration of a normal colony. The conversion into a normal body form suggests the activation of an alternative pathway of asexual reproduction, which involves gradual regaining of normal positional information. It presents a powerful model for studying the specification of the same body plan by different developmental programs.


Assuntos
Cordados/fisiologia , Regeneração , Animais , Cordados/embriologia , Embrião não Mamífero , Estágios do Ciclo de Vida , Reprodução Assexuada
13.
Nature ; 438(7067): 454-9, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16306984

RESUMO

Histocompatibility--the ability of an organism to distinguish its own cells and tissue from those of another--is a universal phenomenon in the Metazoa. In vertebrates, histocompatibility is a function of the immune system controlled by a highly polymorphic major histocompatibility complex (MHC), which encodes proteins that target foreign molecules for immune cell recognition. The association of the MHC and immune function suggests an evolutionary relationship between metazoan histocompatibility and the origins of vertebrate immunity. However, the MHC of vertebrates is the only functionally characterized histocompatibility system; the mechanisms underlying this process in non-vertebrates are unknown. A primitive chordate, the ascidian Botryllus schlosseri, also undergoes a histocompatibility reaction controlled by a highly polymorphic locus. Here we describe the isolation of a candidate gene encoding an immunoglobulin superfamily member that, by itself, predicts the outcome of histocompatibility reactions. This is the first non-vertebrate histocompatibility gene described, and may provide insights into the evolution of vertebrate adaptive immunity.


Assuntos
Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/genética , Urocordados/genética , Animais , Clonagem Molecular , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histocompatibilidade/imunologia , Hibridização In Situ , Dados de Sequência Molecular , Polimorfismo Genético/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Urocordados/imunologia
14.
Dev Biol ; 249(2): 333-48, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12221010

RESUMO

Botryllus schlosseri is a colonial marine urochordate in which all adult organisms (called zooids) in a colony die synchronously by apoptosis (programmed cell death) in cyclical fashion. During this death phase called takeover, cell corpses within the dying organism are engulfed by circulating phagocytic cells. The "old" zooids and their organs are resorbed within 24-36 h (programmed cell removal). This process coincides temporally with the growth of asexually derived primary buds, that harbor a small number of undifferentiated cells, into mature zooids containing functional organs and tissues with the same body plan as adult zooids from which they budded. Within these colonies, all zooids share a ramifying network of extracorporeal blood vessels embedded in a gelatinous tunic. The underlying mechanisms regulating programmed cell death and programmed cell removal in this organism are unknown. In this study, we extirpated buds or zooids from B. schlosseri colonies in order to investigate the interplay that exists between buds, zooids, and the vascular system during takeover. Our findings indicate that, in the complete absence of buds (budectomy), organs from adult zooids underwent programmed cell death but were markedly impaired in their ability to be resorbed despite engulfment of zooid-derived cell corpses by phagocytes. However, when buds were removed from only half of the flower-shaped systems of zooids in a colony (hemibudectomy), the budectomized zooids were completely resorbed within 36-48 h following onset of programmed cell death. Furthermore, if hemibudectomies were carried out by using small colonies, leaving only a single functional bud, zooids from the old generation were also resorbed, albeit delayed to 48-60 h following onset of programmed cell death. This bud eventually reached functional maturity, but grew significantly larger in size than any control zooid, and exhibited hyperplasia. This finding strongly suggested that components of the dying zooid viscera could be reutilized by the developing buds, possibly as part of a colony-wide recycling mechanism. In order to test this hypothesis, zooids were surgically removed (zooidectomy) at the onset of takeover, and bud growth was quantitatively determined. In these zooidectomized colonies, bud growth was severely curtailed. In most solitary, long-lived animals, organs and tissues are maintained by processes of continual death and removal of aging cells counterbalanced by regeneration with stem and progenitor cells. In the colonial tunicate B. schlosseri, the same kinds of processes ensure the longevity of the colony (an animal) by cycles of death and regeneration of its constituent zooids (also animals).


Assuntos
Embrião não Mamífero/fisiologia , Botões de Extremidades/fisiologia , Morfogênese/fisiologia , Regeneração/fisiologia , Urocordados/embriologia , Animais , Apoptose , Botões de Extremidades/citologia , Transdução de Sinais , Especificidade da Espécie , Vertebrados/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...