Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 72: 10-20, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24881579

RESUMO

Myceliophthora thermophila is a thermophilic fungus whose genome encodes a wide range of carbohydrate-active enzymes (CAZymes) involved in plant biomass degradation. Such enzymes have potential applications in turning different kinds of lignocellulosic feedstock into sugar precursors for biofuels and chemicals. The present study examined and compared the transcriptomes and exoproteomes of M. thermophila during cultivation on different types of complex biomass to gain insight into how its secreted enzymatic machinery varies with different sources of lignocellulose. In the transcriptome analysis three monocot (barley, oat, triticale) and three dicot (alfalfa, canola, flax) plants were used whereas in the proteome analysis additional substrates, i.e. wood and corn stover pulps, were included. A core set of 59 genes encoding CAZymes was up-regulated in response to both monocot and dicot straws, including nine polysaccharide monooxygenases and GH10, but not GH11, xylanases. Genes encoding additional xylanolytic enzymes were up-regulated during growth on monocot straws, while genes encoding additional pectinolytic enzymes were up-regulated in response to dicot biomass. Exoproteome analysis was generally consistent with the conclusions drawn from transcriptome analysis, but additional CAZymes that accumulated to high levels were identified. Despite the wide variety of biomass sources tested some CAZy family members were not expressed under any condition. The results of this study provide a comprehensive view from both transcriptome and exoproteome levels, of how M. thermophila responds to a wide range of biomass sources using its genomic resources.


Assuntos
Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Plantas/metabolismo , Proteoma/análise , Sordariales/enzimologia , Sordariales/genética , Biomassa , Plantas/microbiologia
2.
BMC Genomics ; 14: 378, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23742656

RESUMO

BACKGROUND: Viral upper respiratory tract infections are associated with increased colonization by Streptococcus pneumoniae but the mechanisms underlying this relationship are unclear. The objective of this study is to describe a comprehensive picture of the cellular interaction between the adhering bacteria and host cells in the presence or absence of a viral co-infection. RESULTS: Gene expression profiles of Detroit-562 pharyngeal cells, which were either mock-infected or infected with human respiratory syncytial virus (RSV) or human parainfluenza virus 3 (HPIV3), were analyzed using human microarrays. Transcription response of S. pneumoniae strain TIGR4 (serotype 4) in the presence of either mock- or viral-infected cells was analyzed by pneumococcal microarray. Significantly regulated genes were identified by both significance analysis of microarray (SAM) and a ≥ 2-fold change ratio cut-off. The adherence of S. pneumoniae to human pharyngeal cells was significantly augmented in the presence of RSV or HPIV3 infection. Global gene expression profiling of the host cells during infection with RSV or HPIV3 revealed increased transcription of carcinoembryonic antigen-related cell adhesion molecules (CEACAM1), CD47, fibronectin, interferon-stimulated genes and many other host cell adhesion molecules. Pneumococci increased transcription of several genes involved in adhesive functions (psaA, pilus islet), choline uptake and incorporation (lic operon), as well as transport and binding. CONCLUSIONS: We have identified a core transcriptome that represents the basic machinery required for adherence of pneumococci to D562 cells infected or not infected with a virus. These bacterial genes and cell adhesion molecules can potentially be used to control pneumococcal adherence occurring secondary to a viral infection.


Assuntos
Adaptação Fisiológica/genética , Vírus da Parainfluenza 3 Humana/fisiologia , Faringe/citologia , Vírus Sinciciais Respiratórios/fisiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Transcrição Gênica , Aderência Bacteriana/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Regulação Bacteriana da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Faringe/metabolismo , Faringe/microbiologia , Faringe/virologia
3.
BMC Genomics ; 14: 383, 2013 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-23758733

RESUMO

BACKGROUND: Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS: We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION: This work identifies a list of novel potential pneumococcal adherence determinants.


Assuntos
Perfilação da Expressão Gênica , Genômica , Faringe/citologia , Fenótipo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Transcrição Gênica/genética , Aderência Bacteriana/genética , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Genes Bacterianos/genética , Humanos , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Faringe/microbiologia , Deleção de Sequência , Especificidade da Espécie
4.
Microbiology (Reading) ; 159(Pt 7): 1521-1534, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23704792

RESUMO

Group B Streptococcus (GBS) remains the leading cause of early onset sepsis among term infants. Evasion of innate immune defences is critical to neonatal GBS disease pathogenesis. Effectors of innate immunity, as well as numerous antibiotics, frequently target the peptidoglycan layer of the Gram-positive bacterial cell wall. The intramembrane-sensing histidine kinase (IM-HK) class of two-component regulatory systems has been identified as important to the Gram-positive response to cell wall stress. We have characterized the GBS homologue of LiaR, the response regulator component of the Lia system, to determine its role in GBS pathogenesis. LiaR is expressed as part of a three-gene operon (liaFSR) with a promoter located upstream of liaF. A LiaR deletion mutant is more susceptible to cell wall-active antibiotics (vancomycin and bacitracin) as well as antimicrobial peptides (polymixin B, colistin, and nisin) compared to isogenic wild-type GBS. LiaR mutant GBS are significantly attenuated in mouse models of both GBS sepsis and pneumonia. Transcriptional profiling with DNA microarray and Northern blot demonstrated that LiaR regulates expression of genes involved in microbial defence against host antimicrobial systems including genes functioning in cell wall synthesis, pili formation and cell membrane modification. We conclude that the LiaFSR system, the first member of the IM-HK regulatory systems to be studied in GBS, is involved in sensing perturbations in the integrity of the cell wall and activates a transcriptional response that is important to the pathogenesis of GBS infection.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fímbrias Bacterianas/genética , Resposta ao Choque Térmico , Humanos , Recém-Nascido , Camundongos , Dados de Sequência Molecular , Pneumonia Bacteriana/microbiologia , Sepse/microbiologia , Análise de Sequência de DNA , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/genética , Virulência
5.
Fungal Biol ; 116(4): 489-502, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22483047

RESUMO

Sequences from 86 fungal genomes and from the two outgroup genomes Arabidopsis thaliana and Drosophila melanogaster were analyzed to construct a robust molecular phylogeny of thermophilic fungi, which are potentially rich sources of industrial enzymes. To provide experimental reference points, growth characteristics of 22 reported thermophilic or thermotolerant fungi, together with eight mesophilic species, were examined at four temperatures: 22 °C, 34 °C, 45 °C, and 55 °C. Based on the relative growth performances, species with a faster growth rate at 45 °C than at 34 °C were classified as thermophilic, and species with better or equally good growth at 34 °C compared to 45 °C as thermotolerant. We examined the phylogenetic relationships of a diverse range of fungi, including thermophilic and thermotolerant species, using concatenated amino acid sequences of marker genes mcm7, rpb1, and rpb2 obtained from genome sequencing projects. To further elucidate the phylogenetic relationships in the thermophile-rich orders Sordariales and Eurotiales, we used nucleotide sequences from the nuclear ribosomal small subunit (SSU), the 5.8S gene with internal transcribed spacers 1 and 2 (ITS 1 and 2), and the ribosomal large subunit (LSU) to include additional species for analysis. These phylogenetic analyses clarified the position of several thermophilic taxa. Thus, Myriococcum thermophilum and Scytalidium thermophilum fall into the Sordariales as members of the Chaetomiaceae, Thermomyces lanuginosus belongs to the Eurotiales, Malbranchea cinnamomea is a member of the Onygenales, and Calcarisporiella thermophila is assigned to the basal fungi close to the Mucorales. The mesophilic alkalophile Acremonium alcalophilum clusters with Verticillium albo-atrum and Verticillium dahliae, placing them in the recently established order Glomerellales. Taken together, these data indicate that the known thermophilic fungi are limited to the Sordariales, Eurotiales, and Onygenales in the Ascomycota and the Mucorales with possibly an additional order harbouring C. thermophila in the basal fungi. No supporting evidence was found for thermophilic species belonging to the Basidiomycota.


Assuntos
Fungos/classificação , Fungos/crescimento & desenvolvimento , Microbiologia Industrial , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Fungos/genética , Genes de RNAr , Temperatura Alta , Dados de Sequência Molecular , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
6.
Nat Biotechnol ; 29(10): 922-7, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964414

RESUMO

Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.


Assuntos
Ascomicetos/genética , Biomassa , Genoma Fúngico/genética , Genômica/métodos , Temperatura , Ascomicetos/enzimologia , Ascomicetos/crescimento & desenvolvimento , Biodegradação Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Hidrólise , Medicago sativa/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Polissacarídeos/metabolismo , Proteoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
7.
Microbiology (Reading) ; 155(Pt 7): 2211-2222, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19389774

RESUMO

Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of approximately 60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21-87% of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.


Assuntos
Drosophila melanogaster/microbiologia , Wolbachia/genética , Animais , Anquirinas/genética , Hibridização Genômica Comparativa , DNA Bacteriano/análise , DNA Bacteriano/genética , Evolução Molecular , Transferência Genética Horizontal , Genes Bacterianos , Variação Genética , Genoma Bacteriano , Sequências Repetitivas Dispersas , Especificidade da Espécie
8.
J Bacteriol ; 190(6): 1956-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18203834

RESUMO

CsrRS (or CovRS) is a two-component regulatory system that controls expression of multiple virulence factors in the important human pathogen group B Streptococcus (GBS). We now report global gene expression studies in GBS strains 2603V/R and 515 and their isogenic csrR and csrS mutants. Together with data reported previously for strain NEM316, the results reveal a conserved 39-gene CsrRS regulon. In vitro phosphorylation-dependent binding of recombinant CsrR to promoter regions of both positively and negatively regulated genes suggests that direct binding of CsrR can mediate activation as well as repression of target gene expression. Distinct patterns of gene regulation in csrR versus csrS mutants in strain 2603V/R compared to 515 were associated with different hierarchies of relative virulence of wild-type, csrR, and csrS mutants in murine models of systemic infection and septic arthritis. We conclude that CsrRS regulates a core group of genes including important virulence factors in diverse strains of GBS but also displays marked variability in the repertoire of regulated genes and in the relative effects of CsrS signaling on CsrR-mediated gene regulation. Such variation is likely to play an important role in strain-specific adaptation of GBS to particular host environments and pathogenic potential in susceptible hosts.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulon/genética , Streptococcus agalactiae/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência/genética
9.
Science ; 317(5845): 1753-6, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17761848

RESUMO

Although common among bacteria, lateral gene transfer-the movement of genes between distantly related organisms-is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.


Assuntos
Transferência Genética Horizontal , Insetos/genética , Nematoides/genética , Wolbachia/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA Bacteriano , Drosophila/genética , Drosophila/microbiologia , Feminino , Genes Bacterianos , Hibridização in Situ Fluorescente , Insetos/microbiologia , Masculino , Dados de Sequência Molecular , Nematoides/microbiologia , Retroelementos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Simbiose
10.
Plant Physiol ; 139(3): 1323-37, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244158

RESUMO

In the fully sequenced Arabidopsis (Arabidopsis thaliana) genome, many gene models are annotated as "hypothetical protein," whose gene structures are predicted solely by computer algorithms with no support from either expressed sequence matches from Arabidopsis, or nucleic acid or protein homologs from other species. In order to confirm their existence and predicted gene structures, a high-throughput method of rapid amplification of cDNA ends (RACE) was used to obtain their cDNA sequences from 11 cDNA populations. Primers from all of the 797 hypothetical genes on chromosome 2 were designed, and, through 5' and 3' RACE, clones from 506 genes were sequenced and cDNA sequences from 399 target genes were recovered. The cDNA sequences were obtained by assembling their 5' and 3' RACE polymerase chain reaction products. These sequences revealed that (1) the structures of 151 hypothetical genes were different from their predictions; (2) 116 hypothetical genes had alternatively spliced transcripts and 187 genes displayed polyadenylation sites; and (3) there were transcripts arising from both strands, from the strand opposite to that of the prediction and possible dicistronic transcripts. Promoters from five randomly chosen hypothetical genes (At2g02540, At2g31270, At2g33640, At2g35550, and At2g36340) were cloned into report constructs, and their expressions are tissue or development stage specific. Our results indicate at least 50% of hypothetical genes on chromosome 2 are expressed in the cDNA populations with about 38% of the gene structures differing from their predictions. Thus, by using this targeted approach, high-throughput RACE, we revealed numerous transcripts including many uncharacterized variants from these hypothetical genes.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , DNA Complementar/genética , Genes de Plantas/genética , Transcrição Gênica/genética , Processamento Alternativo/genética , Arabidopsis/anatomia & histologia , Códon de Iniciação/genética , Códon de Terminação/genética , Genes Reporter/genética , Genoma de Planta , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...