Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Trends Plant Sci ; 29(5): 501-503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158302

RESUMO

Strigolactones (SLs) are fundamental to the ability of plants to cope with phosphate deficiency. A recent study by Yuan et al. indicates that the genetic module PHR2/NSP1/NSP2 is crucial in activating SL biosynthesis and signaling under inorganic phosphate (Pi) deficiency. Furthermore, this genetic module is essential for improving Pi and nitrogen homeostasis in rice.


Assuntos
Produtos Agrícolas , Lactonas , Oryza , Lactonas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 64(8): 850-857, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37300552

RESUMO

Many plants associate with arbuscular mycorrhizal (AM) fungi for nutrient acquisition, and most legumes also associate with nitrogen-fixing rhizobial bacteria for nitrogen acquisition. The association of plants with AM fungi and rhizobia depends on the perception of lipo-chitooligosaccharides (LCOs) produced by these micro-symbionts. Recent studies reveal that cereals can perceive LCOs better in soil deprived of phosphate (Pi) and nitrogen to activate symbiosis signaling and form efficient AM symbiosis. Nevertheless, the Pi deficiency in the soil hinders the symbiotic association of legumes with rhizobia, ultimately reducing nitrogen fixation. Here, we discuss a mechanistic overview of the factors regulating root nodule symbiosis under Pi-deficient conditions and further emphasize the possible ways to overcome this hurdle. Ignoring the low Pi problem not only can compromise the functionality of the nitrogen cycle by nitrogen fixation through legumes but can also put food security at risk globally. This review aims to bring the scientific community's attention toward the detrimental response of legumes toward Pi-deficient soil for the formation of root nodule symbiosis and hence reduced nitrogen fixation. In this review, we have highlighted the recent studies that have advanced our understanding of these critical areas and discussed some future directions. Furthermore, this review highlights the importance of communicating science with farmers and the agriculture community to fully harness the potential of the symbiotic association of plants in nutrient-deficient soil for sustainable agriculture.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Simbiose/fisiologia , Solo , Fosfatos , Micorrizas/fisiologia , Plantas , Fabaceae/microbiologia , Fixação de Nitrogênio , Quitina , Agricultura
4.
Front Plant Sci ; 13: 1034419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466235

RESUMO

Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.

5.
Front Plant Sci ; 12: 679463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163511

RESUMO

Plants MADS-domain/AGL proteins constitute a large transcription factor (TF) family that controls the development of almost every plant organ. We performed a phylogeny of (ca. 500) MADS-domain proteins from Arabidopsis and four legume species. We identified clades with Arabidopsis MADS-domain proteins known to participate in root development that grouped legume MADS-proteins with similar high expression in roots and nodules. In this work, we analyzed the role of AGL transcription factors in the common bean (Phaseolus vulgaris) - Rhizobium etli N-fixing symbiosis. Sixteen P. vulgaris AGL genes (PvAGL), out of 93 family members, are expressed - at different levels - in roots and nodules. From there, we selected the PvAGL gene denominated PvFUL-like for overexpression or silencing in composite plants, with transgenic roots and nodules, that were used for phenotypic analysis upon inoculation with Rhizobium etli. Because of sequence identity in the DNA sequence used for RNAi-FUL-like construct, roots, and nodules expressing this construct -referred to as RNAi_AGL- showed lower expression of other five PvAGL genes highly expressed in roots/nodules. Contrasting with PvFUL-like overexpressing plants, rhizobia-inoculated plants expressing the RNAi_AGL silencing construct presented affection in the generation and growth of transgenic roots from composite plants, both under non-inoculated or rhizobia-inoculated condition. Furthermore, the rhizobia-inoculated plants showed decreased rhizobial infection concomitant with the lower expression level of early symbiotic genes and increased number of small, ineffective nodules that indicate an alteration in the autoregulation of the nodulation symbiotic process. We propose that the positive effects of PvAGL TF in the rhizobia symbiotic processes result from its potential interplay with NIN, the master symbiotic TF regulator, that showed a CArG-box consensus DNA sequence recognized for DNA binding of AGL TF and presented an increased or decreased expression level in roots from non-inoculated plants transformed with OE_FUL or RNAi_AGL construct, respectively. Our work contributes to defining novel transcriptional regulators for the common bean - rhizobia N-fixing symbiosis, a relevant process for sustainable agriculture.

6.
Plant Cell Physiol ; 62(3): 392-400, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-33515263

RESUMO

Phosphate (Pi) deficiency is a major factor limiting plant productivity worldwide. Land plants have evolved different strategies to cope with Pi deficiency. For instance, plants activate the so-called Pi starvation response (PSR) system, which is regulated by the transcription factor Phosphate Starvation Response1 (PHR1), to adjust plant growth and metabolic activity accordingly. Additionally, land plants can also establish mutualistic associations with soil microbes able to solubilize Pi from plant-inaccessible soil complexes and to transfer it to the host plant. A growing body of evidence indicates that PHR1 and the PSR system not only regulate the plant responses to Pi deficiency in an abiotic context, but they are also crucial for plants to properly interact with beneficial soil microbes able to provide them with soluble Pi. Recent evidence indicates that PHR1 and the PSR system contribute to shaping the plant-associated microbiota through the modulation of the plant immune system. The PSR and immune system outputs are tightly integrated by PHR1. Here, we review how plant host Pi status influences the establishment of the mutualistic association with soil microbes. We also highlight the role of PHR1 and the PSR system in shaping both the root microbiome and plant responses to Pi deficiency.


Assuntos
Fosfatos/deficiência , Plantas/microbiologia , Simbiose , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Fosfatos/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Simbiose/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
7.
Results Probl Cell Differ ; 69: 409-419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263881

RESUMO

Legume-rhizobia symbiosis has a considerable ecological relevance because it replenishes the soil with fixed-nitrogen (e.g., ammonium) for other plants. Because of this benefit to the environment, the exploitation of the legume-rhizobia symbiosis can contribute to the development of the lower input, sustainable agriculture, thereby, reducing dependency on synthetic fertilizers. To achieve this goal, it is necessary to understand the different levels of regulation of this symbiosis to enhance its nitrogen-fixation efficiency. A different line of evidence attests to the relevance of early molecular events in the establishment of a successful symbiosis between legumes and rhizobia. In this chapter, we will review the early molecular signaling in the legume-rhizobia symbiosis. We will focus on the early molecular responses that are crucial for the recognition of the rhizobia as a potential symbiont.


Assuntos
Fabaceae/microbiologia , Interações entre Hospedeiro e Microrganismos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Fixação de Nitrogênio , Simbiose
8.
Plant J ; 103(3): 1125-1139, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32344464

RESUMO

Inhibition of nodule development is one of the main adverse effects of phosphate (Pi) deficiency in legumes. Despite all of the efforts made over the last decades to understand how root nodules cope with Pi deficiency, the molecular mechanisms leading to the reduction in nodule number under Pi deficiency remain elusive. In the present study, we provide experimental evidence indicating that Pi deficiency activates the autoregulation of nodulation (AON) pathway, leading to a reduction in nodule numbers in both common bean and soybean. A transcriptional profile analysis revealed that the expression of the AON-related genes PvNIN, PvRIC1, PvRIC2, and PvTML is upregulated under Pi deficiency conditions. The downregulation of the MYB transcription factor PvPHR1 in common bean roots significantly reduced the expression of these four AON-related genes. Physiological analyses indicated that Pi deficiency does not affect the establishment of the root nodule symbiosis in the supernodulation mutant lines Pvnark and Gmnark. Reciprocal grafting and split-roots analyses determined that the activation of the AON pathway was required for the inhibitory effect of Pi deficiency. Altogether, these data improve our understanding of the genetic mechanisms controlling the establishment of the root nodule symbiosis under Pi deficiency.


Assuntos
Glycine max/metabolismo , Phaseolus/metabolismo , Fósforo/deficiência , Nodulação , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Phaseolus/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/metabolismo , Glycine max/fisiologia , Simbiose
9.
Front Microbiol ; 11: 615775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384681

RESUMO

OmpR, is one of the best characterized response regulators families, which includes transcriptional regulators with a variety of physiological roles including the control of symbiotic nitrogen fixation (SNF). The Rhizobium etli CE3 genome encodes 18 OmpR-type regulators; the function of the majority of these regulators during the SNF in common bean, remains elusive. In this work, we demonstrated that a R. etli mutant strain lacking the OmpR-type regulator RetPC57 (ΔRetPC57), formed less nodules when used as inoculum for common bean. Furthermore, we observed reduced expression level of bacterial genes involved in Nod Factors production (nodA and nodB) and of plant early-nodulation genes (NSP2, NIN, NF-YA and ENOD40), in plants inoculated with ΔRetPC57. RetPC57 also contributes to the appropriate expression of genes which products are part of the multidrug efflux pumps family (MDR). Interestingly, nodules elicited by ΔRetPC57 showed increased expression of genes relevant for Carbon/Nitrogen nodule metabolism (PEPC and GOGAT) and ΔRetPC57 bacteroids showed higher nitrogen fixation activity as well as increased expression of key genes directly involved in SNF (hfixL, fixKf, fnrN, fixN, nifA and nifH). Taken together, our data show that the previously uncharacterized regulator RetPC57 is a key player in the development of the R. etli - P. vulgaris symbiosis.

10.
Front Plant Sci ; 10: 1177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632421

RESUMO

Unlike most other land plants, legumes can fulfill their nitrogen needs through the establishment of symbioses with nitrogen-fixing soil bacteria (rhizobia). Through this symbiosis, fixed nitrogen is incorporated into the food chain. Because of this ecological relevance, the genetic mechanisms underlying the establishment of the legume-rhizobia symbiosis (LRS) have been extensively studied over the past decades. During this time, different types of regulators of this symbiosis have been discovered and characterized. A growing number of studies have demonstrated the participation of different types of small RNAs, including microRNAs, in the different stages of this symbiosis. The involvement of small RNAs also indicates that Argonaute (AGO) proteins participate in the regulation of the LRS. However, despite this obvious role, the relevance of AGO proteins in the LRS has been overlooked and understudied. Here, we discuss and hypothesize the likely participation of AGO proteins in the regulation of the different steps that enable the establishment of the LRS. We also briefly review and discuss whether rhizobial symbiosis induces DNA damages in the legume host. Understanding the different levels of LRS regulation could lead to the development of improved nitrogen fixation efficiency to enhance sustainable agriculture, thereby reducing dependence on inorganic fertilizers.

11.
Plant Cell Physiol ; 60(3): 575-586, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476329

RESUMO

Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Simbiose/fisiologia
12.
Genes (Basel) ; 9(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326664

RESUMO

Phosphate (Pi) deficiency reduces nodule formation and development in different legume species including common bean. Despite significant progress in the understanding of the genetic responses underlying the adaptation of nodules to Pi deficiency, it is still unclear whether this nutritional deficiency interferes with the molecular dialogue between legumes and rhizobia. If so, what part of the molecular dialogue is impaired? In this study, we provide evidence demonstrating that Pi deficiency negatively affects critical early molecular and physiological responses that are required for a successful symbiosis between common bean and rhizobia. We demonstrated that the infection thread formation and the expression of PvNSP2, PvNIN, and PvFLOT2, which are genes controlling the nodulation process were significantly reduced in Pi-deficient common bean seedlings. In addition, whole-genome transcriptional analysis revealed that the expression of hormones-related genes is compromised in Pi-deficient seedlings inoculated with rhizobia. Moreover, we showed that regardless of the presence or absence of rhizobia, the expression of PvRIC1 and PvRIC2, two genes participating in the autoregulation of nodule numbers, was higher in Pi-deficient seedlings compared to control seedlings. The data presented in this study provides a mechanistic model to better understand how Pi deficiency impacts the early steps of the symbiosis between common bean and rhizobia.

13.
Front Plant Sci ; 7: 517, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200004

RESUMO

Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

14.
Front Plant Sci ; 7: 600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200068

RESUMO

Common bean (Phaseolus vulgaris) was domesticated ∼8000 years ago in the Americas and today is a staple food worldwide. Besides caloric intake, common bean is also an important source of protein and micronutrients and it is widely appreciated in developing countries for their affordability (compared to animal protein) and its long storage life. As a legume, common bean also has the economic and environmental benefit of associating with nitrogen-fixing bacteria, thus reducing the use of synthetic fertilizers, which is key for sustainable agriculture. Despite significant advances in the plant nutrition field, the mechanisms underlying the adaptation of common bean to low nutrient input remains largely unknown. The recent release of the common bean genome offers, for the first time, the possibility of applying techniques and approaches that have been exclusive to model plants to study the adaptive responses of common bean to challenging environments. In this review, we discuss the hallmarks of common bean domestication and subsequent distribution around the globe. We also discuss recent advances in phosphate, iron, and zinc homeostasis, as these nutrients often limit plant growth, development, and yield. In addition, iron and zinc are major targets of crop biofortification to improve human nutrition. Developing common bean varieties able to thrive under nutrient limiting conditions will have a major impact on human nutrition, particularly in countries where dry beans are the main source of carbohydrates, protein and minerals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...