Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(5): e202300379, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235922

RESUMO

The ligand-sensing transcription factor retinoid X receptor (RXR) is the universal heterodimer partner of nuclear receptors and involved in multiple physiological processes. Its pharmacological modulation holds therapeutic potential in cancer and neurodegeneration but many available RXR ligands lack specificity. The sesquiterpenoid valerenic acid has been identified as RXR agonist with unprecedented subtype and homodimer preference. Here, we identified simplified mimetics of the complex natural product by rational design and virtual screening that exhibited similar activity profiles on RXR and informed about structural elements contributing to the favorable activity.


Assuntos
Indenos , Sesquiterpenos , Receptores X de Retinoides , Receptores do Ácido Retinoico/química , Sesquiterpenos/farmacologia
2.
ChemMedChem ; 18(21): e202300404, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37697963

RESUMO

Retinoid X receptors (RXR) are ligand-sensing transcription factors with a unique role in nuclear receptor signaling as universal heterodimer partners. RXR modulation holds potential in cancer, neurodegeneration and metabolic diseases but adverse effects of RXR activation and lack of selective modulators prevent further exploration as therapeutic target. The natural product valerenic acid has been discovered as RXR agonist with unprecedented preference for RXR subtype and homodimer activation. To capture structural determinants of this activity profile and identify potential for optimization, we have studied effects of structural modification of the natural product on RXR modulation and identified an analogue with enhanced RXR homodimer agonism.


Assuntos
Indenos , Sesquiterpenos , Indenos/farmacologia , Receptores X de Retinoides/metabolismo , Receptores Citoplasmáticos e Nucleares
3.
Methods Mol Biol ; 2706: 25-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37558939

RESUMO

Public repositories containing compound-bioactivity data for millions of small molecules offer a valuable resource for chemogenomic compound candidate search. Nonetheless, owning to nonuniform data mining, these databases are often incomplete, thus advocating the combined use of data from several repositories to increase target coverage and data accuracy. Here, we present a workflow to generate custom datasets from public databases for mining chemogenomic compound candidates. The compiled set provides flags for differences in structural and bioactivity data and enables rapid extraction of potent and selective bioactive compounds.


Assuntos
Confiabilidade dos Dados , Mineração de Dados , Bases de Dados Factuais
4.
J Am Chem Soc ; 145(27): 14802-14810, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37385602

RESUMO

The lipid-sensing transcription factor PPARγ is the target of antidiabetic thiazolidinediones (TZD). At two sites within its ligand binding domain, it also binds oxidized vitamin E metabolites and the vitamin E mimetic garcinoic acid. While the canonical interaction within the TZD binding site mediates classical PPARγ activation, the effects of the second binding on PPARγ activity remain elusive. Here, we identified an agonist mimicking dual binding of vitamin E metabolites and developed a selective ligand of the second site, unveiling potential noncanonical regulation of PPARγ activities. We found that this alternative binding event can simultaneously occur with orthosteric ligands and it exerted different effects on PPARγ-cofactor interactions compared to both orthosteric PPARγ agonists and antagonists, indicating the diverse roles of the two binding sites. Alternative site binding lacked the pro-adipogenic effect of TZD and mediated no classical PPAR signaling in differential gene expression analysis but markedly diminished FOXO signaling, suggesting potential therapeutic applications.


Assuntos
PPAR gama , Tiazolidinedionas , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Ligantes , Fatores de Transcrição/metabolismo , Tiazolidinedionas/química , Sítios de Ligação
5.
Chem Commun (Camb) ; 59(31): 4551-4561, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37000699

RESUMO

Nuclear receptor modulation enables pharmacological control of gene expression thus rendering the 48 human nuclear receptors as attractive targets for drug discovery. Several nuclear receptor ligands like glucocorticoids are approved and highly important drugs illustrating the therapeutic potential of nuclear receptor modulation. However, a significant portion of the nuclear receptor family is still poorly explored for new therapeutic opportunities which is due to a lack of potent, selective and well-characterized ligands. Preliminary evidence supports great therapeutic potential of several orphan nuclear receptors in various pathologies underlining the need for high-quality chemical tools to enable target validation. Here, we evaluate the characteristics of available nuclear receptor modulators and the gaps in coverage of the nuclear receptor family with chemical tools. We review successful approaches to nuclear receptor modulator development and highlight the opportunities and challenges in closing the gaps of missing tools for understudied nuclear receptors to open new therapeutic avenues.


Assuntos
Descoberta de Drogas , Receptores Nucleares Órfãos , Humanos , Receptores Nucleares Órfãos/metabolismo , Ligantes
6.
J Med Chem ; 66(1): 333-344, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533416

RESUMO

The three retinoid X receptor subtypes (RXRα, RXRß, RXRγ) exhibit critical regulatory roles in cell proliferation and differentiation, metabolism, and inflammation. Due to their importance in nuclear receptor signaling, RXRs are widely distributed and pan-RXR agonists cause adverse effects, but the three highly conserved RXR ligand binding sites render the development of subtype-selective ligands a major challenge. We have fused elements of known RXR ligands to obtain a new RXR agonist chemotype on which minor structural modifications enabled the development of tools with single-subtype preference for RXRα, RXRß, and RXRγ. Molecular modeling indicated different binding conformations and interaction patterns with the RXR LBDs as factors of preferential binding. In a phenotypic adipocyte differentiation experiment, only the RXRα preferential tool enhanced the adipogenic effects of pioglitazone, suggesting this subtype as particularly relevant in adipogenesis and highlighting the set of subtype-preferential RXR agonist tools as suitable for functional cellular studies.


Assuntos
Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares , Receptores X de Retinoides , Ligantes , Diferenciação Celular
7.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077469

RESUMO

Fatty acid mimetics (FAM) are bioactive molecules acting through the binding sites of endogenous fatty acid metabolites on enzymes, transporters, and receptors. Due to the special characteristics of these binding sites, FAMs share common chemical features. Pharmacological modulation of fatty acid signaling has therapeutic potential in multiple pathologies, and several FAMs have been developed as drugs. We aimed to elucidate the promiscuity of FAM drugs on lipid-activated transcription factors and tested 64 approved compounds for activation of RAR, PPARs, VDR, LXR, FXR, and RXR. The activity screening revealed nuclear receptor agonism of several FAM drugs and considerable promiscuity of NSAIDs, while other compound classes evolved as selective. These screening results were not anticipated by three well-established target prediction tools, suggesting that FAMs are underrepresented in bioactivity data for model development. The screening dataset may therefore valuably contribute to such tools. Oxaprozin (RXR), tianeptine (PPARδ), mycophenolic acid (RAR), and bortezomib (RAR) exhibited selective agonism on one nuclear receptor and emerged as attractive leads for the selective optimization of side activities. Additionally, their nuclear receptor agonism may contribute relevant and valuable polypharmacology.


Assuntos
Ácidos Graxos , PPAR delta , Ácidos Graxos/metabolismo , PPAR delta/metabolismo , Receptores Citoplasmáticos e Nucleares , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458710

RESUMO

Publicly available compound and bioactivity databases provide an essential basis for data-driven applications in life-science research and drug design. By analyzing several bioactivity repositories, we discovered differences in compound and target coverage advocating the combined use of data from multiple sources. Using data from ChEMBL, PubChem, IUPHAR/BPS, BindingDB, and Probes & Drugs, we assembled a consensus dataset focusing on small molecules with bioactivity on human macromolecular targets. This allowed an improved coverage of compound space and targets, and an automated comparison and curation of structural and bioactivity data to reveal potentially erroneous entries and increase confidence. The consensus dataset comprised of more than 1.1 million compounds with over 10.9 million bioactivity data points with annotations on assay type and bioactivity confidence, providing a useful ensemble for computational applications in drug design and chemogenomics.


Assuntos
Desenho de Fármacos , Consenso , Bases de Dados Factuais , Humanos
9.
J Med Chem ; 64(23): 16956-16973, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34839661

RESUMO

The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.


Assuntos
Química Farmacêutica , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...