Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39273944

RESUMO

BACKGROUND: Leafy greens, particularly romaine lettuce, are often associated with outbreaks due to their susceptibility to contamination from various environmental sources. This study aimed to evaluate the presence of E. coli, Salmonella, copper, nickel, zinc, and manganese in irrigation water, lettuce leaves, and agricultural soil in the Litani River Basin (LRB), Lebanon. METHOD: Samples were collected from five demonstration plots employing different agricultural practices. Heavy metal concentrations were determined using atomic absorption spectrometry, while E. coli and Salmonella testing were conducted through conventional culturing techniques. The impact of E. coli contamination on seed germination and the interaction effects between E. coli and heavy metals were also examined. The study also compared the effectiveness of various irrigation systems in reducing bacterial contamination. RESULTS: The results demonstrated that contamination levels varied significantly across the plots and irrigation types. This variation underscores the necessity of site-specific mitigation strategies to enhance food safety. Our findings highlight the importance of selecting appropriate irrigation methods and implementing tailored agricultural practices to minimize the risk of contamination. CONCLUSION: This research provides valuable insights for optimizing agricultural practices in the LRB to ensure food safety and environmental sustainability.

2.
Front Microbiol ; 8: 357, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337181

RESUMO

Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.

3.
Food Microbiol ; 58: 79-86, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27217362

RESUMO

The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity.


Assuntos
Carnobacterium/genética , Galactose/metabolismo , Variação Genética , Genômica , Lactose/metabolismo , Leite/metabolismo , Animais , Carnobacterium/metabolismo , Hexosefosfatos , Filogenia , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA