Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Womens Health (Lond) ; 18: 17455057221117966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35972046

RESUMO

Polycystic ovary syndrome is the most common endocrine disorder in women of reproductive age, which is still incurable. However, the symptoms can be successfully managed with proper medication and lifestyle interventions. Despite its prevalence, little is known about its etiology. In this review article, the up-to-date diagnostic features and parameters recommended on the grounds of evidence-based data and different guidelines are explored. The ambiguity and insufficiency of data when diagnosing adolescent women have been put under special focus. We look at some of the most recent research done to establish relationships between different gene polymorphisms with polycystic ovary syndrome in various populations along with the underestimated impact of environmental factors like endocrine-disrupting chemicals on the reproductive health of these women. Furthermore, the article concludes with existing treatments options and the scopes for advancement in the near future. Various therapies have been considered as potential treatment through multiple randomized controlled studies, and clinical trials conducted over the years are described in this article. Standard therapies ranging from metformin to newly found alternatives based on vitamin D and gut microbiota could shine some light and guidance toward a permanent cure for this female reproductive health issue in the future.


Assuntos
Metformina , Síndrome do Ovário Policístico , Adolescente , Feminino , Humanos , Estilo de Vida , Metformina/uso terapêutico , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética
2.
Heliyon ; 7(8): e07889, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485750

RESUMO

Stomata are turgor-driven microscopic epidermal valves of land plants. The controlled opening and closing of the valves are essential for regulating the gas exchange and minimizing the water loss and eventually regulating the internal temperatures. Stomata are also a major site of pathogen/microbe entry and plant defense system. Maintaining proper stomatal density, distribution, and development are pivotal for plant survival. Arabidopsis is a model plant to study molecular basis including signaling pathways, transcription factors, and key components for the growth and development of specific organs as well as the whole plant. It has intensively been studied and found out the driver for the development and patterning of stomata. In this review, we have explained how the MAPK signaling cascade is controlled by TOO MANY MOUTHS (TMM) receptor-like protein and the Erecta (ER) receptor-like kinase family. We have also summarized how this MAPK cascade affects primary transcriptional regulators to finally activate the main three basic Helix-Loop-Helix (bHLH) principal transcription factors, which are required for the development and patterning of stomata. Moreover, regulatory activity and cellular connections of polar proteins and environmentally mediated ligand-receptor interactions in the stomatal developmental pathways have extensively been discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...