Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21700, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522441

RESUMO

The intensified quest for efficient materials drives us to study the alkali (Na)-based niobate (NaNbO3) and tantalate (NaTaO3) perovskites while exploiting the first-principles approach based on density functional theory, coded within WIEN2K. While using the Birch Murnaghan fit, we find these materials to be stable structurally. Similarly, the ab-initio molecular dynamics simulations (AIMD) at room temperature reveals that the compounds exhibit no structural distortion and are stable at room temperature. By using the recommended modified Becke-Johnson potential, we determine the electronic characteristics of the present materials providing insight into their nature: they are revealed to be indirect semiconductors with the calculated bandgaps of 2.5 and 3.8 eV for NaNbO3 and NaTaO3, respectively. We also determine the total and partial density of states for both materials and the results obtained for the bandgap energies of these materials are consistent with those determined by the band structure. We find that both compounds exhibit transparency to the striking photon at low energy and demonstrate absorption and optical conduction in the UV region. The elastic study shows that these compounds are mechanically stable, whereas NaNbO3 exhibits stronger ability to withstand compressive as well as shear stresses and resists change in shape while NaTaO3 demonstrates weaker ability to resist change in volume. We also find that none of the compound is perfectly isotropic and NaNbO3 and NaTaO3 are ductile and brittle in nature, respectively. By studying the optical properties of these materials, we infer that they are promising candidates for applications in optoelectronic devices. We believe that this report will invoke the experimental studies for further investigation.

2.
ACS Omega ; 7(37): 33408-33422, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157758

RESUMO

Scaffold architecture in the sectors of biotechnology and drug discovery research include scaffold hopping and molecular modelling techniques and helps in searching for potential drug candidates containing different core structures using computer-based software, which greatly aids medicinal and pharmaceutical chemistry. Going ahead, the computational method of scaffold architecture is thought to produce new scaffolds, and the method is capable of helping search engines toward producing new scaffolds that are likely to represent potent compounds with high therapeutic applications, which is a possibility in this case as well. Here we probate a different interactive design by natural product hopping, molecular modelling, pharmacophore modelling, modification, and combination of the phytoconstituents present in different medicinal plants for developing a pharmacophore-guided good drug candidate for the variants of SARS-CoV-2 or Covid 19. In the modern era, these approaches are carried out at every level of development of scaffold queries, which are increasingly summarized from chemical structures. In this context, we report on a successfully designed drug-like candidate having a high-binding-affinity "compound SLP" by understanding the relationships between the compounds' pharmacophores, scaffold functional groups, and biological activities beyond their individual applications that abide by Lipinski's rule of five, Ghose rule, Veber rule etc. The new scaffold generated by altering the core of the known phyto-compounds holds a good predicted ADMET profile and is examined with iMODS server to check the molecular dynamics simulation with normal mode analysis (NMA). The scaffold's three-dimensional (3D) structure yields a searchable natural product koenimbine from a conformer database having good ADMET property and high availability in spice Murraya koenigii leaves. M. koenigii leaves are easily available in the market, and might ensure the immunity, good health, and well-being of people if affected with any of the variants of Covid 19. The cell viability studies of koenimbine on murine colorectal carcinoma cell line (CT-26) showed no toxicity on normal mice lymphocyte cells (MLCs). The anticancer mechanism of koenimbine was displayed by its enhanced capacity to produce intercellular reactive oxygen species (ROS) in the colorectal carcinoma cell line.

3.
Appl Nanosci ; : 1-11, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120603

RESUMO

Nanostructured Zinc oxide (ZnO) materials have attained exciting research interests among various metal oxide nanoparticles due to their unique features. Thus, the scope of applications for ZnO nanoparticles (ZnO NPs) is vast and efficient. The current study demonstrates a simple and environmental-friendly approach for the synthesis of ZnO NPs using the extract of the Scoparia Dulcis. Scoparia Dulcis is a common medicinal plant in Kerala (India) that is traditionally used for its medicinal properties. Morphological characterizations of the as-synthesized ZnO NPs were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM). The results revealed that ZnO NPs showed pebble-like morphology and possessed an average particle size of ~ 20 nm. Further, antibacterial and antifungal activities of as-prepared ZnO NPs were investigated against E. coli, Staphylococcus aureus, as well as Candida albicans, and Aspergillus niger, respectively, using the agar-well diffusion method. The results revealed that the prepared ZnO NPs shows excellent antimicrobial activity against the examined microorganisms. Moreover, the antioxidant activity of the as-synthesized ZnO NPs was evaluated using the DPPH assay, which indicated an excellent IC50 value of 1.78 µg/mL that shows high antioxidant activity. All these results proved that the S. dulcis plant extract-mediated synthesis method is a simple, low-cost, eco-friendly procedure for preparing efficient ZnO NPs for biomedical applications.

4.
Biomolecules ; 12(9)2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36139117

RESUMO

Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In the current study, a de novo design approach was used to generate novel and effective chemical therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1 activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy, in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular mechanics generalized Born and surface area) binding free energy indicated the potentiality of the molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics for the management of BTC.


Assuntos
Neoplasias do Sistema Biliar , Ribonucleotídeo Redutases , Aminoácidos , Bile , Neoplasias do Sistema Biliar/tratamento farmacológico , Humanos , Hidrazonas/uso terapêutico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
5.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012627

RESUMO

Cytochrome P450 3A5 (CYP3A5) is one of the crucial CYP family members and has already proven to be an important drug target for cardiovascular diseases. In the current study, the PubChem database was screened through molecular docking and high-affinity molecules were adopted for further assessment. A negative image-based (NIB) model was used for a similarity search by considering the complementary shape and electrostatics of the target and small molecules. Further, the molecules were segregated into active and inactive groups through six machine learning (ML) matrices. The active molecules found in each ML model were used for in silico pharmacokinetics and toxicity assessments. A total of five molecules followed the acceptable pharmacokinetics and toxicity profiles. Several potential binding interactions between the proposed molecules and CYP3A5 were observed. The dynamic behavior of the selected molecules in the CYP3A5 was explored through a molecular dynamics (MD) simulation study. Several parameters obtained from the MD simulation trajectory explained the stability of the protein-ligand complexes in dynamic states. The high binding affinity of each molecule was revealed by the binding free energy calculation through the MM-GBSA methods. Therefore, it can be concluded that the proposed molecules might be potential CYP3A5 molecules for therapeutic application in cardiovascular diseases subjected to in vitro/in vivo validations.


Assuntos
Doenças Cardiovasculares , Inibidores do Citocromo P-450 CYP3A , Simulação de Dinâmica Molecular , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Humanos , Aprendizado de Máquina , Simulação de Acoplamento Molecular
6.
J Fluoresc ; 32(4): 1263-1277, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35708890

RESUMO

The Schiff-base probe H2VL [6,6'-((1E,1'E)-hydrazine-1,2 diylidenebis(methanylylidene))bis(2-methoxyphenol)] is synthesized and structurally characterized by single crystal X-ray diffraction (SCXRD). H2VL is able to detect selectively acetate ion (OAc-) colorimetrically over other anions with 1:1 co-ordination. The detection limit is found to be 4.93 µM. On the other hand, fluorescence intensity of the receptor is drastically enhanced with Zn2+ and Cd2+ in the presence of acetate as counter anion. N, N-Dimethyl formamide (DMF) or Dimethylsulphoxide (DMSO) and acetate (OAc-) was the best solvent and counter anion for Zn2+/Cd2+ -sensing compared with other solvents and anions, respectively. Detection limit for Zn2+ and Cd2+ are calculated to be 1.94 µM and 1.99 µM, respectively. The strong selective emissive behavior could be attributed to the CHEF (chelation-enhanced fluorescence) process. According to the changes in output emission intensity in DMSO in response to the set of ions (Zn2+, Cd2+ and OAc¯) as input variables, the function of 3-input multifunctional molecular logic circuits has been demonstrated. The molecular docking studies of H2VL with DNA and BSA are also performed to confirm its possible bioactivity.


Assuntos
Cádmio , Zinco , Acetatos , Ânions , Dimetil Sulfóxido , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Zinco/química
7.
J Biomol Struct Dyn ; 40(9): 3899-3906, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33252031

RESUMO

This research is a recent effort to explore some new heterocyclic compounds as novel and potential nonstructural protein-16-nonstructural protein-10 (Nsp16-Nsp10) inhibitors for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibition. The SARS-CoV-2 is causative agent of coronavirus disease 2019 (COVID-19) pandemic. A set of 58 molecules belongs to the naphthyridine and quinoline derivatives have been recently synthesized and considered for structure-based virtual screening against Nsp16-Nsp10. Molecular docking was virtually performed to screen for anti-SARS-CoV-2 activity against Nsp16-Nsp10. Fourteen out of fifty-eight compounds were exhibited binding affinity higher than co-crystal bound ligand s-adenosylmethionine (SAM) toward Nsp16-Nsp10. Further, the in silico pharmacokinetics assessment was carried out and it was found that two molecules possess the acceptable pharmacokinetic profile, hence considered promising Nsp16-Nsp10 inhibitors. The binding interaction analysis was revealed some crucial binding interactions between the final selected two molecules and ligand-binding amino acid residues of Nsp16-Nsp10 protein. In order to explore the characteristics of the protein-ligand complex and how selected small molecules retained inside the receptor cavity in dynamic states, all-atoms conventional molecular dynamics (MD) simulation was performed. Several factors were obtained from the MD simulation trajectory evidently suggested the potentiality of the molecules and stability of the protein-ligand complex. Finally, the binding affinity of both molecules and SAM was explored through the MM-GBSA approach which explained that both molecules possess strong affection towards the Nsp16-Nsp10. Hence, from the pharmacoinformatics assessment, it can be concluded that both heterocyclic compounds might be crucial for SARS-CoV-2 inhibition, subjected to experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Metiltransferases/química , Simulação de Acoplamento Molecular , Naftiridinas/farmacologia , Proteínas não Estruturais Virais/química
8.
J Biomol Struct Dyn ; 40(5): 2082-2098, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095103

RESUMO

The protein-protein interactions (PPIs) in the biological systems are important to maintain a number of cellular processes. Several disorders including cancer may be developed due to dysfunction in the assembly of PPI networks. Hence, targeting intracellular PPIs can be considered as a crucial drug target for cancer therapy. Among the enormous and diverse group of cancer-enabling PPIs, the Hsp90-Cdc37 is prominent for cancer therapeutic development. The successful inhibition of Hsp90-Cdc37 PPI interface can be an important therapeutic option for cancer management. In the current study, a set of more than sixty thousand compounds belong to four databases were screened through a multi-steps molecular docking study in Glide against the Hsp90-Cdc37 interaction interface. The Glide-score and Prime-MM-GBSA based binding free energy of DCZ3112, standard Hsp90-Cdc37 inhibitor were found to be -6.96 and -40.46 kcal/mol, respectively. The above two parameters were used as cut-off score to reduce the chemical space from all successfully docked molecules. Furthermore, the in-silico pharmacokinetics parameters, common-feature pharmacophore analyses and the molecular binding interactions were used to wipe out the inactive molecules. Finally, four molecules were found to be important to modulate the Hsp90-Cdc37 interface. The potentiality of the final four molecules was checked through several drug-likeness characteristics. The molecular dynamics (MD) simulation study explained that all four molecules retained inside the interface of Hsp90-Cdc37. The binding free energy of each molecule obtained from the MD simulation trajectory was clearly explained the strong affection towards the Hsp90-Cdc37. Hence, the proposed molecule might be crucial for successful inhibition of the Hsp90-Cdc37 interface.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Chaperoninas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias , Proteínas de Ciclo Celular/química , Chaperoninas/antagonistas & inibidores , Chaperoninas/química , Proteínas de Choque Térmico HSP90/química , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Ligação Proteica , Mapeamento de Interação de Proteínas , Triazinas
9.
Mol Divers ; 26(1): 265-278, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33786727

RESUMO

Transmembrane protease serine-2 (TMPRSS2) is a cell-surface protein expressed by epithelial cells of specific tissues including those in the aerodigestive tract. It helps the entry of novel coronavirus (n-CoV) or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host cell. Successful inhibition of the TMPRSS2 can be one of the crucial strategies to stop the SARS-CoV-2 infection. In the present study, a set of bioactive molecules from Morus alba Linn. were screened against the TMPRSS2 through two widely used molecular docking engines such as Autodock vina and Glide. Molecules having a higher binding affinity toward the TMPRSS2 compared to Camostat and Ambroxol were considered for in-silico pharmacokinetic analyses. Based on acceptable pharmacokinetic parameters and drug-likeness, finally, five molecules were found to be important for the TMPRSS2 inhibition. A number of bonding interactions in terms of hydrogen bond and hydrophobic interactions were observed between the proposed molecules and ligand-interacting amino acids of the TMPRSS2. The dynamic behavior and stability of best-docked complex between TRMPRSS2 and proposed molecules were assessed through molecular dynamics (MD) simulation. Several parameters from MD simulation have suggested the stability between the protein and ligands. Binding free energy of each molecule calculated through MM-GBSA approach from the MD simulation trajectory suggested strong affection toward the TMPRSS2. Hence, proposed molecules might be crucial chemical components for the TMPRSS2 inhibition.


Assuntos
Tratamento Farmacológico da COVID-19 , Morus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Serina , Internalização do Vírus
10.
Mol Divers ; 26(3): 1697-1714, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34482478

RESUMO

In this study, a set of dietary polyphenols was comprehensively studied for the selective identification of the potential inhibitors/modulators for galectin-1. Galectin-1 is a potent prognostic indicator of tumor progression and a highly regarded therapeutic target for various pathological conditions. This indicator is composed of a highly conserved carbohydrate recognition domain (CRD) that accounts for the binding affinity of ß-galactosides. Although some small molecules have been identified as galectin-1 inhibitors/modulators, there are limited studies on the identification of novel compounds against this attractive therapeutic target. The extensive computational techniques include potential drug binding site recognition on galectin-1, binding affinity predictions of ~ 500 polyphenols, molecular docking, and dynamic simulations of galectin-1 with selective dietary polyphenol modulators, followed by the estimation of binding free energy for the identification of dietary polyphenol-based galectin-1 modulators. Initially, a deep neural network-based algorithm was utilized for the prediction of the druggable binding site and binding affinity. Thereafter, the intermolecular interactions of the polyphenol compounds with galectin-1 were critically explored through the extra-precision docking technique. Further, the stability of the interaction was evaluated through the conventional atomistic 100 ns dynamic simulation study. The docking analyses indicated the high interaction affinity of different amino acids at the CRD region of galectin-1 with the proposed five polyphenols. Strong and consistent interaction stability was suggested from the simulation trajectories of the selected dietary polyphenol under the dynamic conditions. Also, the conserved residue (His44, Asn46, Arg48, Val59, Asn61, Trp68, Glu71, and Arg73) associations suggest high affinity and selectivity of polyphenols toward galectin-1 protein.


Assuntos
Galectina 1 , Polifenóis , Sítios de Ligação , Carboidratos/química , Galectina 1/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
11.
J Mol Graph Model ; 111: 108113, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959151

RESUMO

The current ongoing pandemic of COVID-19 urges immediate treatment measures for controlling the highly contagious SARS-CoV-2 infections. The papain-like protease (PLpro), which is released from nsp3, is presently being evaluated as a significant anti-viral drug target for COVID-19 therapy development. Particularly, PLpro is implicated in the cleavage of viral polyproteins and antagonizes the host innate immune response through its deubiquitinating and deISGylating actions, thus making it a high-profile antiviral therapeutic target. The present study reports a few specific food compounds that can bind tightly with the SARS-CoV-2 PLpro protein identified through extensive computational screening techniques. Precisely, extensive advanced computational approaches combining target-based virtual screening, particularly employing sub-structure based similarity search, molecular docking, molecular dynamics (MD) simulations, and MM-GBSA based binding free energy calculations have been employed for the identification of the most promising food compounds with substantial functional implications as SARS-CoV-2 PLpro protein inhibitors/modulators. Observations from the present research investigation also provide a deeper understanding of the binding modes of the proposed four food compounds with SARS-CoV-2 PLpro protein. In docking analyses, all compounds have established essential inter-molecular interaction profiles at the active site cavity of the SARS-CoV-2 PLpro protein. Similarly, the long-range 100 ns conventional MD simulation studies also provided an in-depth understanding of probable interactions and dynamic behaviour of the SARS-CoV-2 PLpro protein-food compound complexes. Binding free energies of all molecular systems revealed a strong interaction affinity of food compounds towards the SARS-CoV-2 PLpro protein. Moreover, clear-cut comparative analyses against the known standard inhibitor also suggest that proposed food compounds may act as potential active chemical entities for modulating the action of the SARS-CoV-2 PLpro protein.


Assuntos
COVID-19 , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2
12.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681845

RESUMO

Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. ß-Adrenergic receptors (ß1-AR and ß2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both ß1- and ß2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of ß1- and ß2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 2/química , Humanos , Ligantes , Aprendizado de Máquina , Ligação Proteica
13.
Biophys Chem ; 278: 106664, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34438243

RESUMO

Colorectal cancer is the third most commonly occurring cancer with very less treatment options in case surgery fails to cure the disease. The emergence of drug resistant colon cancer poses a new threat and calls for better drugs for treatment of colon cancer patients. Novel substituted benzo[d]thiazol-2-yl)-5-(pyridin-2-yl) penta-1,4-dien-3-one trihybrid molecules were synthesized following appropriate synthetic route. These compounds were tested for their efficacy in colon cancer and drug resistant colon cancer cell lines. Their toxicity was studied on the ICR mice model and the selectivity study was performed in calorimetric assay and xenograft mice model. An attempt was also made to chalk out the feasible mechanism of action based on molecular docking and molecular dynamics simulation studies. Compounds 4f, 4h and 4i were found to be highly effective and selective towards the inhibition of the colon cancer and drug resistant colon cancer cell lines and in the xenograft method. Selective compounds from this study can be developed into potential drug candidates for the possible treatment of drug resistant colorectal cancer.


Assuntos
Antineoplásicos , Animais , Antineoplásicos/química , Benzotiazóis/química , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Humanos , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
14.
Biophys Chem ; 273: 106588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848944

RESUMO

Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Lignanas/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Lignanas/química , Modelos Moleculares , Estrutura Molecular , Proteínas Repressoras/metabolismo
15.
Mol Divers ; 25(3): 1979-1997, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33844135

RESUMO

Worldwide coronavirus disease 2019 (COVID-19) outbreak is still threatening global health since its outbreak first reported in the late 2019. The causative novel virus has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although COVID-19 emergent with significant mortality, there is no availability of definite treatment measures. It is now extremely desirable to identify potential chemical entities against SARS-CoV-2 for the treatment of COVID-19. In the present study, a state-of-art virtual screening protocol was implemented on three anti-viral specific chemical libraries against SARS-CoV-2 main protease (Mpro). Particularly, viewing the large-scale biological role of Mpro in the viral replication process it has been considered as a prospective anti-viral drug target. Herein, on collected 79,892 compounds, hierarchical multistep docking followed by relative binding free energy estimation has been performed. Thereafter, implying a user-defined XP-dock and MM-GBSA cut-off scores as -8.00 and -45.00 kcal/mol, chemical space has been further reduced. Exhaustive molecular binding interactions analyses and various pharmacokinetics profiles assessment suggested four compounds (ChemDiv_D658-0159, ChemDiv_F431-0433, Enamine_Z3019991843 and Asinex_LAS_51389260) as potent inhibitors/modulators of SARS-CoV-2 Mpro. In-depth protein-ligand interactions stability in the dynamic state has been evaluated by 100 ns molecular dynamics (MD) simulation studies along with MM-GBSA-based binding free energy estimations of entire simulation trajectories that have revealed strong binding affinity of all identified compounds towards Mpro. Hence, all four identified compounds might be considered as promising candidates for future drug development specifically targeting the SARS-CoV-2 Mpro; however, they also need experimental assessment for a better understanding of molecular interaction mechanisms.


Assuntos
Antivirais/química , Antivirais/farmacologia , Simulação por Computador , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Avaliação Pré-Clínica de Medicamentos , Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Termodinâmica
16.
Biophys Chem ; 270: 106537, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450550

RESUMO

Nipah virus (NiV) infections are highly contagious and can cause severe febrile encephalitis. An outbreak of NiV infection has reported high mortality rates in Southeast Asian countries including Bangladesh, East Timor, Malaysia, Papua New Guinea, Vietnam, Cambodia, Indonesia, Madagascar, Philippines, Thailand and India. Considering the high risk for an epidemic outbreak, the World Health Organization (WHO) declared NiV as an emerging priority pathogen. However, there are no effective therapeutics or any FDA approved drugs available for the treatment of this infection. Among the known nine proteins of NiV, glycoprotein plays an important role in initiating the entry of viruses and attaching to the host cell receptors. Herein, three antiviral databases consisting of 79,892 chemical entities have been computationally screened against NiV glycoprotein (NiV-G). Particularly, multi-step molecular docking followed by extensive molecular binding interactions analyses, binding free energy estimation, in silico pharmacokinetics, synthetic accessibility and toxicity profile evaluations have been carried out for initial identification of potential NiV-G inhibitors. Further, molecular dynamics (MD) simulation has been performed to understand the dynamic properties of NiV-G protein-bound with proposed five inhibitors (G1-G5) and their interactions behavior, and any conformational changes in NiV-G protein during simulations. Moreover, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) based binding free energies (∆G) has been calculated from all MD simulation trajectories to understand the energy contribution of each proposed compound in maintaining and stabilizing the complex binding interactions with NiV-G protein. Proposed compounds showed high negative ∆G values ranging from -166.246 to -226.652 kJ/mol indicating a strong affinity towards the NiV-G protein.


Assuntos
Antivirais/farmacologia , Glicoproteínas/antagonistas & inibidores , Vírus Nipah/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Descoberta de Drogas , Glicoproteínas/química , Glicoproteínas/metabolismo , Infecções por Henipavirus/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vírus Nipah/fisiologia , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/química , Proteínas Virais/metabolismo
17.
Arch Biochem Biophys ; 700: 108771, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33485847

RESUMO

In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Endorribonucleases/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Antivirais/farmacocinética , COVID-19/metabolismo , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Endorribonucleases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Técnicas In Vitro , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Interface Usuário-Computador , Proteínas não Estruturais Virais/química
18.
J Biomol Struct Dyn ; 39(13): 4686-4700, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32552462

RESUMO

At present, the world is facing a pandemic named as COVID-19, caused by SARS-CoV-2. Traditional Chinese medicine has recommended the use of liquorice (Glycyrrhiza species) in the treatment of infections caused by SARS-CoV-2. Therefore, the present investigation was carried out to identify the active molecule from the liquorice against different protein targets of COVID-19 using an in-silico approach. The molecular docking simulation study of 20 compounds along with two standard antiviral drugs (Lopinavir and Rivabirin) was carried out with the help of Autodock vina software using two protein targets from COVID-19 i.e. spike glycoprotein (PDB ID: 6VSB) and Non-structural Protein-15 (Nsp15) endoribonuclease (PDB ID: 6W01). From the observed binding energy and the binding interactions, glyasperin A showed high affinity towards Nsp15 endoribonuclease with uridine specificity, while glycyrrhizic acid was found to be best suited for the binding pocket of spike glycoprotein and also prohibited the entry of the virus into the host cell. Further, the dynamic behavior of the best-docked molecules inside the spike glycoprotein and Nsp15 endoribonuclease were explored through all-atoms molecular dynamics (MD) simulation study. Several parameters from the MD simulation have substantiated the stability of protein-ligand stability. The binding free energy of both glyasperin A and glycyrrhizic acid was calculated from the entire MD simulation trajectory through the MM-PBSA approach and found to high binding affinity towards the respective protein receptor cavity. Thus, glyasperin A and glycyrrhizic acid could be considered as the best molecule from liquorice, which could find useful against COVID-19. Communicated by Ramaswamy H. Sarma.


Assuntos
Glycyrrhiza , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , COVID-19 , Glicoproteínas , Glycyrrhiza/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
19.
J Biomol Struct Dyn ; 39(3): 923-942, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31984863

RESUMO

Drug resistance is an unsolved and major concern in the bacterial infection. Continuous development of drug-resistance to the antibiotics exponentially rises the danger of bacterial infections. Chemical components from the plants are becoming a major resource of potentially effective therapeutic chemical agents for the wide range of diseases including bacterial infections. In the current study, pharmacoinformatics methodologies were implemented on more than two hundred known phytochemicals to find promising beta-lactamase inhibitors for therapeutically effective anti-bacterial agents. Initially, the molecular docking-based score was used to reduce the chemical space of the selected dataset. Fourteen molecules were found to have more affinity towards the beta-lactamase in compared to the well-known anti-bacterial agent, Avibactam. Binding interactions analysis revealed the strong binding interactions between phytochemicals and catalytic amino residues. For further analysis, molecular dynamics (MD) simulations, density functional theory (DFT) and in silico pharmacokinetics studies were performed. Parameters from MD simulations studies suggested that selected molecules are strong enough to retain in the active site in different orientations of the beta-lactamase. The orbital energies obtained from the DFT study was undoubtedly explained the potentiality of the selected compounds for being effective beta-lactamase inhibitors. The drug-likeness and acceptable pharmacokinetics parameters were observed using in silico ADME analysis. Therefore, observations from the multiple pharmacoinformatics approach explained without any doubt that selected molecules are potential enough being promising anti-bacterial compounds. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , beta-Lactamases/metabolismo
20.
Comb Chem High Throughput Screen ; 24(4): 591-597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32807047

RESUMO

AIM AND OBJECTIVE: At present, the world is facing a global pandemic threat of SARSCoV- 2 or COVID-19 and to date, there are no clinically approved vaccines or antiviral drugs available for the treatment of coronavirus infections. Studies conducted in China recommended the use of liquorice (Glycyrrhiza species), an integral medicinal herb of traditional Chinese medicine, in the deactivation of COVID-19. Therefore, the present investigation was undertaken to identify the leads from the liquorice plant against COVID-19 using molecular docking simulation studies. MATERIALS AND METHODS: A set of reported bioactive compounds of liquorice were investigated for COVID-19 main protease (Mpro) inhibitory potential. The study was conducted on Autodock vina software using COVID-19 Mpro as a target protein having PDB ID: 6LU7. RESULTS: Out of the total 20 docked compounds, only six compounds showed the best affinity towards the protein target, which included glycyrrhizic acid, isoliquiritin apioside, glyasperin A, liquiritin, 1-methoxyphaseollidin and hedysarimcoumestan B. From the overall observation, glycyrrhizic acid followed by isoliquiritin apioside demonstrated the best affinity towards Mpro representing the binding energy of -8.6 and -7.9 Kcal/mol, respectively. Nevertheless, the other four compounds were also quite comparable with the later one. CONCLUSION: From the present investigation, we conclude that the compounds having oxane ring and chromenone ring substituted with hydroxyl 3-methylbut-2-enyl group could be the best alternative for the development of new leads from liquorice plant against COVID-19.


Assuntos
Proteases 3C de Coronavírus/efeitos dos fármacos , Glycyrrhiza/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...