Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1304857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274444

RESUMO

Clofazimine (CFZ) and bedaquiline (BDQ) are currently used for the treatment of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains. In recent years, adding CFZ and BDQ to tuberculosis (TB) drug regimens against MDR Mtb strains has significantly improved treatment results, but these improvements are threatened by the emergence of MDR and extensively drug-resistant (XDR) Mtb strains. Recently, CFZ and BDQ have attracted much attention for their strong clinical efficacy, although very little is known about the mechanisms of action, drug susceptibility test (DST), resistance mechanisms, cross-resistance, and pharmacokinetics of these two drugs. In this current review, we provide recent updates on the mechanisms of action, DST, associated mutations with individual resistance and cross-resistance, clinical efficacy, and pharmacokinetics of CFZ and BDQ against Mtb strains. Presently, known mechanisms of resistance for CFZ and/or BDQ include mutations within the Rv0678, pepQ, Rv1979c, and atpE genes. The cross-resistance between CFZ and BDQ may reduce available MDR-/XDR-TB treatment options. The use of CFZ and BDQ for treatment in the setting of limited DST could allow further spread of drug resistance. The DST and resistance knowledge are urgently needed where CFZ and BDQ resistance do emerge. Therefore, an in-depth understanding of clinical efficacy, DST, cross-resistance, and pharmacokinetics for CFZ and BDQ against Mtb can provide new ideas for improving treatment outcomes, reducing mortality, preventing drug resistance, and TB transmission. Along with this, it will also help to develop rapid molecular diagnostic tools as well as novel therapeutic drugs for TB.

2.
World J Microbiol Biotechnol ; 39(2): 64, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581678

RESUMO

Genome mining in silico approaches allow scientists to proficiently evaluate the genomic potency of secondary bioactive chemical producers and find new bioactive compounds in different bacteria. Streptomyces is one of the most ubiquitous bacterial genera in the environments, and well-known as prolific producers of diverse and valuable natural products (NPs) with significant biological activities. Mining and prioritizing of NP biosynthetic gene clusters (BGCs) would be the most important stage in the identification of novel compounds. Comparative genomics and genetic similarity network analysis of 62 Streptomyces public reference genomes demonstrated that individuals of these species exhibit a huge number of distinct NP BGCs, the most of which are cryptic and unconnected to any reported NPs with high phylogenetic variation among individuals. It was assumed that substantial heterogeneity across the varieties of species of Streptomyces drives outstanding biosynthetic and metabolic potential, making them plausible candidates for the identification of novel molecules.


Assuntos
Produtos Biológicos , Streptomyces , Humanos , Streptomyces/genética , Streptomyces/metabolismo , Filogenia , Genômica , Metabolismo Secundário/genética , Família Multigênica , Produtos Biológicos/metabolismo , Genoma Bacteriano
3.
BMC Microbiol ; 22(1): 323, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581815

RESUMO

Recent years, Burkholderia species have emerged as a new source of natural products (NPs) with increasing attractions. Genome mining suggests the Burkholderia genomes include many natural product biosynthetic gene clusters (BGCs) which are new targets for drug discovery. In order to collect more Burkholderia, here, a strain S-53 was isolated from the soil samples on a mountain area in Changde, P.R. China and verified by comparative genetic analysis to belong to Burkholderia. The complete genome of Burkholderia strain S-53 is 8.2 Mbps in size with an average G + C content of 66.35%. Its taxonomy was both characterized by 16S rRNA- and whole genome-based phylogenetic trees. Bioinformatic prediction in silico revealed it has a total of 15 NP BGCs, some of which may encode unknown products. It is expectable that availability of these BGCs will speed up the identification of new secondary metabolites from Burkholderia and help us understand how sophisticated BGC regulation works.


Assuntos
Burkholderia , Burkholderia/genética , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma , Família Multigênica
4.
Front Microbiol ; 13: 939919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274688

RESUMO

Gram-positive Streptomyces bacteria can produce valuable secondary metabolites. Streptomyces genomes include huge unknown silent natural product (NP) biosynthetic gene clusters (BGCs), making them a potential drug discovery repository. To collect antibiotic-producing bacteria from unexplored areas, we identified Streptomyces sp. CS-7 from mountain soil samples in Changsha, P.R. China, which showed strong antibacterial activity. Complete genome sequencing and prediction in silico revealed that its 8.4 Mbp genome contains a total of 36 BGCs for NPs. We purified two important antibiotics from this strain, which were structurally elucidated to be mayamycin and mayamycin B active against Staphylococcus aureus. We identified functionally a BGC for the biosynthesis of these two compounds by BGC direct cloning and heterologous expression in Streptomyces albus. The data here supported this Streptomyces species, especially from unexplored habitats, having a high potential for new NPs.

5.
Molecules ; 26(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34946606

RESUMO

Microbial genome sequencing has uncovered a myriad of natural products (NPs) that have yet to be explored. Bacteria in the genus Pseudomonas serve as pathogens, plant growth promoters, and therapeutically, industrially, and environmentally important microorganisms. Though most species of Pseudomonas have a large number of NP biosynthetic gene clusters (BGCs) in their genomes, it is difficult to link many of these BGCs with products under current laboratory conditions. In order to gain new insights into the diversity, distribution, and evolution of these BGCs in Pseudomonas for the discovery of unexplored NPs, we applied several bioinformatic programming approaches to characterize BGCs from Pseudomonas reference genome sequences available in public databases along with phylogenetic and genomic comparison. Our research revealed that most BGCs in the genomes of Pseudomonas species have a high diversity for NPs at the species and subspecies levels and built the correlation of species with BGC taxonomic ranges. These data will pave the way for the algorithmic detection of species- and subspecies-specific pathways for NP development.


Assuntos
Produtos Biológicos/metabolismo , Pseudomonas/metabolismo , Algoritmos , Biologia Computacional , Bases de Dados Genéticas , Filogenia , Pseudomonas/genética
6.
Comput Biol Med ; 140: 105046, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34864585

RESUMO

As an emerging resource, Gram-negative Burkholderia bacteria were able to produce a wide range of bioactive secondary metabolites with potential therapeutic and biotechnological applications. Genome mining has emerged as an influential platform for screening and pinpointing natural product diversity with the increasing number of Burkholderia genome sequences. Here, for genome mining of potential biosynthetic gene clusters (BGCs) and prioritizing prolific producing Burkholderia strains, we investigated the relationship between species evolution and distribution of main BGC groups using computational analysis of complete genome sequences of 248 Burkholderia species publicly available. We uncovered significantly differential distribution patterns of BGCs in the Burkholderia phyla, even among strains that are genetically very similar. We found various types of BGCs in Burkholderia, including some representative and most common BGCs for biosynthesis of encrypted or known terpenes, non-ribosomal peptides (NRPs) and some hybrid BGCs for cryptic products. We also observed that Burkholderia contain a lot of unspecified BGCs, representing high potentials to produce novel compounds. Analysis of BGCs for RiPPs (Ribosomally synthesized and posttranslationally modified peptides) and a texobactin-like BGC as examples showed wide classification and diversity of RiPP BGCs in Burkholderia at species level and metabolite predication. In conclusion, as the biggest investigation in silico by far on BGCs of the particular genus Burkholderia, our data implied a great diversity of natural products in Burkholderia and BGC distributions closely related to phylogenetic variation, and suggested different or concurrent strategies used to identify new drug molecules from these microorganisms will be important for the selection of potential BGCs and prolific producing strains for drug discovery.

7.
Toxins (Basel) ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946240

RESUMO

Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.


Assuntos
Bebidas/análise , Micotoxinas/análise , Bebidas/microbiologia , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos
8.
Acta Pharm Sin B ; 11(3): 738-749, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33777679

RESUMO

Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with rifampin-streptomycin or rifampin-clarithromycin daily for 8 weeks recommended by World Health Organization (WHO). These options are lengthy with severe side effects. A new anti-tuberculosis drug, TB47, targeting QcrB in cytochrome bc1:aa3 complex is being developed in China. TB47-containing regimens were evaluated in a well-established murine model using an autoluminescent M. ulcerans strain. High-level TB47-resistant spontaneous M. ulcerans mutants were selected and their qcrB genes were sequenced. The in vivo activities of TB47 against both low-level and high-level TB47-resistant mutants were tested in BU murine model. Here, we show that TB47-containing oral 3-drug regimens can completely cure BU in ≤2 weeks for daily use or in ≤3 weeks given twice per week (6 doses in total). All high-level TB47-resistant mutants could only be selected using the low-level mutants which were still sensitive to TB47 in mice. This is the first report of double mutations in QcrB in mycobacteria. In summary, TB47-containing regimens have promise to cure BU highly effectively and prevent the emergence of drug resistance. Novel QcrB mutations found here may guide the potential clinical molecular diagnosis of resistance and the discovery of new drugs against the high-level resistant mutants.

9.
Biosens Bioelectron ; 165: 112396, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729517

RESUMO

Pseudomonas aeruginosa is an increasingly prevalent pathogen that has become a serious health concern due to an increasing incidence of multidrug-resistant (MDR) hospital-acquired infections. The emergence of MDR-P. aeruginosa coupled with shrinking antibiotic pipelines has increased the demand for new antimicrobials and therapeutics. An effective tool for drug screening both in vitro and in vivo can facilitate the discovery of drugs and regimens for treating P. aeruginosa infection. Here, for the first time, we combined the mini-Tn7 system and Xer/dif recombinase system to construct a stable and selectable marker-free autoluminescent P. aeruginosa (SfAlPa) by one step. Afterwards, in vitro and in vivo activities of several antibiotics including amikacin, biapenem, levofloxacin and polymyxin B were assessed using SfAlPa. This study demonstrated that the use of SfAlPa could significantly facilitate rapid real-time evaluating the activities of compounds. Compared to prevailing methods, this method reduces the time, effort, animals and costs consumed in the discovery of new drugs against P. aeruginosa. Additionally, the methodology described in this study could be easily modified for construction of selectable marker-free reporter strain in other Gram-negative bacteria.


Assuntos
Técnicas Biossensoriais , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Polimixina B , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética
10.
Infect Drug Resist ; 13: 217-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158237

RESUMO

OBJECTIVE: Pyrazinamide (PZA) is a cornerstone of modern tuberculosis regimens. This study aimed to investigate the performance of genotypic testing of pncA + upstream region, rpsA, panD, Rv2783c, and clpC1 genes to add insights for more accurate molecular diagnosis of PZA-resistant (R) Mycobacterium tuberculosis. METHODS: Drug susceptibility testing, sequencing analysis of PZA-related genes including the entire operon of pncA (Rv2044c-pncA-Rv2042c) and PZase assay were performed for 448 M. tuberculosis clinical isolates. RESULTS: Our data showed that among 448 M. tuberculosis clinical isolates, 113 were MDR, 195 pre-XDR and 70 XDR TB, while the remaining 70 strains had other combinations of drug-resistance. A total of 60.04% (269/448) M. tuberculosis clinical isolates were resistant to PZA, of which 78/113 were MDR, 119/195 pre-XDR and 29/70 XDR TB strains. PZAR isolates have predominance (83.3%) of Beijing genotype. Genotypic characterization of Rv2044c-pncA-Rv2042c revealed novel nonsynonymous mutations in Rv2044c with negative PZase activity which led to confer PZAR. Compared with phenotypic data, 84.38% (227/269) PZAR strains with mutations in pncA + upstream region exhibited 83.64% sensitivity but the combined evaluation of the mutations in rpsA 2.60% (7/269), panD 1.48% (4/269), Rv2783c 1.11% (3/269) and Rv2044c 0.74% (2/269) increased the sensitivity to 89.59%. Fifty-seven novel mutations were identified in this study. Interestingly, a frameshift deletion (C-114del) in upstream of pncAwt nullified the effect of A-11G mutation and induced positive PZase activity, divergent from five PZase negative A-11G PZAR mutants. Twenty-six PZAR strains having wild-type-sequenced genes with positive or negative PZase suggest the existence of unknown resistance mechanisms. CONCLUSION: Our study revealed that PZAR rate in MDR and pre-XDR TB was markedly higher in southern China. The concomitant evaluation of pncA + UFR, rpsA, panD, Rv2783c, and Rv2044c provides more dependable genotypic results of PZA resistance. Fifty-seven novel mutations/indels in this study may play a vital role as diagnostic markers. The upstream region of pncA and PZase regulation are valuable to explore the unknown mechanism of PZA-resistance.

11.
J Glob Antimicrob Resist ; 22: 290-295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32142951

RESUMO

OBJECTIVES: Amikacin is the only second-line injectable antituberculosis (anti-TB) drug still recommended for multidrug-resistant tuberculosis (MDR-TB) treatment when a short MDR-TB regimen is designed. Mutations in rrs and eis are reported to be associated with resistance to amikacin. In this study, we investigated the incidence of rrs, eis, tap and whiB7 mutations in amikacin-resistant Mycobacterium tuberculosis clinical isolates to find the proportion of different mutations related to amikacin resistance. METHODS: A total of 395 clinical isolates of M. tuberculosis were used for phenotypic drug susceptibility testing (DST) to 10 drugs with the Löwenstein-Jensen (L-J) method. We sequenced rrs, eis, tap and whiB7 genes in 178 M. tuberculosis clinical isolates (89 amikacin-resistant isolates and 89 of 306 amikacin-susceptible isolates). RESULTS: Our data showed that 22.53% (89/395) M. tuberculosis clinical isolates were resistant to amikacin. Of the 89 amikacin-resistant isolates, 89.89% (80/89) were MDR-TB, of which 12.36% (11/89) were pre-extensively drug-resistant TB (pre-XDR-TB) and 77.53% (69/89) were XDR-TB. The rrs mutations were found in 82% (73/89) in amikacin-resistant M. tuberculosis clinical isolates. The A1401G alteration in the rrs gene was the most dominant mutation (80.90%; 72/89). Five mutations were detected as new in rrs, tap and whiB7. Notably, 13.48% (12/89) amikacin-resistant isolates had no known mutation in these genes. CONCLUSIONS: Our data reveal that the rrs mutation is a predominant molecular marker of amikacin resistance in southern China. Analysis of the rrs gene mutations will significantly reduce the time and cost to diagnose amikacin resistance in TB patients. Other unknown amikacin resistance mechanism(s) exist.


Assuntos
Mycobacterium tuberculosis , Amicacina/farmacologia , Capreomicina , China/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Canamicina , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Prevalência
12.
Microb Drug Resist ; 26(7): 766-775, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31976809

RESUMO

Streptomycin (STR) is the first antibiotic used in the treatment of tuberculosis (TB) and the earliest antituberculosis drug with acquired resistance developed by Mycobacterium tuberculosis. The high prevalence of such resistance in many parts of the world limits its use for treating multidrug-resistant (MDR) TB. The aims of this study are to characterize of mutations in rpsL, rrs, and gidB genes in MDR M. tuberculosis isolates originating from southern China and to investigate possible relationship between mutations and strain genotypes for precise diagnosis and treatment. Sequences of rpsL, rrs, and gidB genes and the resistance profiles were analyzed for 218 MDR M. tuberculosis isolates. Our study showed that 68.35% of MDR M. tuberculosis isolates were resistant to STR and 89.91% of STR-resistant (STRR) isolates were Beijing lineage strains. Mutations were observed in STRR MDR M. tuberculosis isolates at the following rates: 72.48% in rpsL, 36.91% in rrs, and 15.44% in gidB. Compared with the phenotypic data, the combination of mutations in rpsL, rrs, and gidB has sensitivity and specificity of 96.64% and 100.00%, respectively. The most common mutations in STRR isolates were rpsL128,263 and rrs514,1401, of which rpsL128 showed association with Beijing lineage (p < 0.001). It is noteworthy that a1401g mutation was present in rrs, while MDR M. tuberculosis isolates were resistant to both STR and amikacin. Twenty two novel mutations were found in STRR isolates. These findings could be helpful to develop rapid molecular diagnostic methods and understand STR resistance in China for developing TB precision medicine and disturbance of drug-resistant TB transmission.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Estreptomicina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , China/epidemiologia , Genes Bacterianos , Genótipo , Humanos , Testes de Sensibilidade Microbiana
13.
G3 (Bethesda) ; 10(1): 13-22, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31719113

RESUMO

Mycobacterium abscessus is a fast growing Mycobacterium species mainly causing skin and respiratory infections in human. M. abscessus is resistant to numerous drugs, which is a major challenge for the treatment. In this study, we have sequenced the genomes of two clinical M. abscessus strains having rough and smooth morphology, using the single molecule real-time and Illumina HiSeq sequencing technology. In addition, we reported the first comparative methylome profiles of a rough and a smooth M. abscessus clinical strains. The number of N4-methylcytosine (4mC) and N6-methyladenine (6mA) modified bases obtained from smooth phenotype were two-fold and 1.6 fold respectively higher than that of rough phenotype. We have also identified 4 distinct novel motifs in two clinical strains and genes encoding antibiotic-modifying/targeting enzymes and genes associated with intracellular survivability having different methylation patterns. To our knowledge, this is the first report about genome-wide methylation profiles of M. abscessus strains and identification of a natural linear plasmid (15 kb) in this critical pathogen harboring methylated bases. The pan-genome analysis of 25 M. abscessus strains including two clinical strains revealed an open pan genome comprises of 7596 gene clusters. Likewise, structural variation analysis revealed that the genome of rough phenotype strain contains more insertions and deletions than the smooth phenotype and that of the reference strain. A total of 391 single nucleotide variations responsible for the non-synonymous mutations were detected in clinical strains compared to the reference genome. The comparative genomic analysis elucidates the genome plasticity in this emerging pathogen. Furthermore, the detection of genome-wide methylation profiles of M. abscessus clinical strains may provide insight into the significant role of DNA methylation in pathogenicity and drug resistance in this opportunistic pathogen.


Assuntos
Epigenoma , Genoma Bacteriano , Mycobacterium abscessus/genética , Fenótipo , Metilação de DNA , Polimorfismo Genético
14.
Medchemcomm ; 10(1): 49-60, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30774854

RESUMO

Tuberculosis (TB) has become one of the most significant public health problems in recent years. Antibiotic therapy remains the mainstay of TB control strategies, but the increasing resistance of mycobacterial species has heightened alarm, requiring the development of novel drugs in order to improve treatment outcomes. Here, as an effort to identify novel and effective antitubercular agents, we designed and synthesized a series of novel substituted benzimidazolallylidenehydrazinylmethylthiazole derivatives via a multi-component molecular hybridization approach with single molecular architecture. Our design strategy involved assembling the antitubercular pharmacophoric fragments benzimidazole, 2-aminothiazole and substituted α,ß-unsaturated ketones via condensation reactions. All the newly synthesized compounds were fully characterized via NMR and mass spectral data and evaluated for in vitro biological activity against the H37Ra strain of Mycobacterium tuberculosis. From the biological evaluation data, we identified some effective compounds, of which 8g and 7e were the most active ones (both having MIC values of 2.5 µg mL-1). In addition, compound 8g exhibited a lower cytotoxicity profile. We conceive that compound 8g may serve as a chemical probe of interest for further lead optimization studies with the general aim of developing novel and effective antitubercular agents.

15.
Nat Commun ; 10(1): 524, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705268

RESUMO

Buruli ulcer (BU) is an emerging infectious disease that causes disfiguring skin ulcers. The causative agent, Mycobacterium ulcerans, secretes toxin called mycolactone that triggers inflammation and immunopathology. Existing treatments are lengthy and consist of drugs developed for tuberculosis. Here, we report that a pyrazolo[1,5-a]pyridine-3-carboxamide, TB47, is highly bactericidal against M. ulcerans both in vitro and in vivo. In the validated mouse model of BU, TB47 alone reduces M. ulcerans burden in mouse footpads by more than 2.5 log10 CFU compared to the standard BU treatment regimen recommended by the WHO. We show that mutations of ubiquinol-cytochrome C reductase cytochrome subunit B confer resistance to TB47 and the dissimilarity of CydABs from different mycobacteria may account for their differences in susceptibility to TB47. TB47 is highly potent against M. ulcerans and possesses desirable pharmacological attributes and low toxicity that warrant further assessment of this agent for treatment of BU.


Assuntos
Antibacterianos/uso terapêutico , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , Mycobacterium ulcerans/efeitos dos fármacos , Mycobacterium ulcerans/patogenicidade , Animais , Complexo III da Cadeia de Transporte de Elétrons/genética , Camundongos , Mutação , Mycobacterium ulcerans/genética
16.
J Thorac Dis ; 11(11): 4613-4625, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31903250

RESUMO

BACKGROUND: Levofloxacin (LVX) and Moxifloxacin (MXF) are the cornerstones for treatment of multidrug-resistant tuberculosis (MDR-TB). China is one of the highest MDR- and fluoroquinolones (FQ)-resistant TB burdens countries. DNA gyrase encoded by gyr genes is the main target of FQ in Mycobacterium tuberculosis (MTB). The prevalence and molecular characterization of LVX- and MXF-resistant MTB strains from southern China were examined in this study. METHODS: Drug susceptibility testing (DST) of 400 MTB clinical isolates was evaluated by proportion method on Löwenstein-Jensen (LJ) medium against ten drugs. The sequencing of entire gyrA and gyrB genes and multiplex PCR were performed to distinguish the prevalence of mutant types in Beijing and non-Beijing genotypes. RESULTS: Three hundred and twenty-one out of four hundred (80.25%) drug-resistant isolates (resistant > one drug) were categorized as 83/321 (25.80%) MDR, 174/321 (54.20%) pre-XDR and 64/321 (19.93%) XDR-MTB. Overall, 303/400 (75.75%) LVX- and 292/400 (73.00%) MXF-resistant (R) MTB strains were identified. Two hundred seventy-one out of three hundred and three (89.43%) resistant strains carried mutations in gyrA and 91/303 (30.03%) in gyrB. Interestingly, 18 novel mutations were detected in gyrA and gyrB genes. Mutations at (A90, D94) and (T500, G510, G512) frequently existed in QRDR(s) of gyrA and gyrB respectively in 286/400 (71.50%) LVXRMXFR strains. The novel mutations in- and out-side the QRDR of gyrA (L105R, A126E, M127K, D151T, V165A) and gyrB (D461H, N499S, G520A) increased the sensitivity and consistency of genotypic tests. Notably, 25 LVXRMXFR strains were found with unknown resistance mechanisms. CONCLUSIONS: Mutations in QRDR(s) were concomitantly associated with Beijing and non-Beijing genotypes. The prevalence of resistance and cross-resistance between LVX and MXF in MTB isolates from southern China was immensely higher than other countries. Our valuable findings provide the substantial implications to improve the reliability of genotypic diagnostic tests relying on potential resistance conferring mutations in entire gyr genes.

17.
J Genet Genomics ; 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29941353

RESUMO

Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29755957

RESUMO

Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.


Assuntos
Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/classificação
19.
J Genet Genomics ; 44(1): 21-37, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28117224

RESUMO

Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Terapia de Alvo Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Mycobacterium tuberculosis/genética
20.
Bioinformation ; 10(5): 281-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966535

RESUMO

Snake venom is an abundant resource of diverse pharmacologically bioactive proteins and peptides and a good natural source of drug lead compounds and used as important research tools in the field of toxicology, pharmacology and neuroscience. Three finger toxins (3FTx) is an important super-family of snake venom proteins which has a conserved three finger like appearance in three dimensional structures. Members of 3FTx family show a wide array of pharmacological effects by targeting different receptors and ion channels with high specificity and many of them are being investigated as potential drug target. Therefore, with a vision to verdict a new edge and attempt we determined the amino acid compositional (%) profile, physiochemical properties, secondary structural and functional analysis and phylogenetic relationship of three finger toxins present in four different elapid snake species namely, Naja naja, Astrotia stokesii, Hydrophis cyanocintus and Pelamis platura using different bioinformatics tools. From the outcome of the current studies, it will be possible to know about a range of biological functions which are responsible mainly for the glowing amino acid composition profile of these proteins. Amino acid composition (%) profile although represents differential amount of different amino acid residues which encompasses a family precise model but all the protein sequence have a conserved amount of cysteine. The analysis of physicochemical properties can be used as a basic approach to contribute in developing rational drug through protein engineering and understanding different physiological function which will be beneficial for the welfare of human being.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...