Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Heliyon ; 10(5): e26646, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455544

RESUMO

This article presents a novel real-time meta-material (MM) sensor based on a non-invasive method that operates in microwave frequency ranges at 8.524 GHz to measure blood glucose levels with quality factor 184 is designed and fabricated. A cross enclosed between two square shapes produces a strong interaction between glucose samples and electromagnetic waves. In this study, 5 were tested noninvasively using the proposed glucose resonant sensor with a range of glucose-level changes from 50 to 130 mg/dL. For this range of glucose-level changes, the frequency detection resolution is 5.06 MHz/(mg/dL), respectively. Despite simulations, fabrication procedures (F.P.) have been carried out for more precise result verification. For the purpose of qualitative analysis, the proposed MM sensor is considered a viable candidate for determining glucose levels.

3.
Sci Rep ; 14(1): 5588, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454118

RESUMO

In this paper, a new metamaterial absorber (MMA) is presented that exhibits peak absorptions at 3.26 GHz, 11.6 GHz, and 17.13 GHz within S, X, and Ku bands. The unit cell of the proposed MMA is constructed on an FR4 substrate having an electrical dimension of 0.144λ × 0.144λ, where wavelength, λ is calculated at the lowest absorption frequency. The unique structural design of the unit cell consists of two concentric copper rings with which dumbbell-shaped structures are attached. The rotating symmetrical structural design of this MMA provides around 93.8%, 96.47%, and 99.95% peak absorptance in the mentioned frequencies, which is invariable with the change of incident angle as well as polarization angle. The metamaterial properties of the proposed absorber are studied along with the surface current analysis. The MMA shows single negative behaviour and it also exhibits high-quality factors (Q factor) of 21.73, 41.42, and 51.90 at maximum absorptance frequencies. The MMA is analysed by it's equivalent circuit to understand the resonance phenomenon, which is verified through simulation in Advanced Design Systems (ADS) software. The testing is done on the developed prototype of the proposed MMA. Measurement results are in close proximity to the simulation results. Due to its high Q factor, high EMR, and insensitivity to polarization and angle of incidence, it can be utilized as a part of miniaturized microwave device. In addition, the proposed MMA can exhibit high sensing performance and flexibility to differentiate different oils in S, X, and Ku bands.

4.
Sci Rep ; 13(1): 15943, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743360

RESUMO

In this article, a unique metamaterial (MTM) structure is presented that exhibits four resonances of transmission coefficient (S21) that fall into S, X, and Ku bands. The MTM design is initiated on a Rogers (RT5880) substrate with an electrical dimension of 0.088 λ × 0.088 λ (λ is calculated at 3.424 GHz). The resonating patch contains four quartiles connected by a central metallic strip. The placement of each quartile is such that the whole resonator is mirror symmetric about the vertical axis. Two H-shaped modifiers connect two quartiles of each vertical half of the resonator. These H-shaped modifiers form the resonance cavity in its vicinity, and thus help significantly to orient the overall resonances of the proposed MTM at 3.424 GHz, 10 GHz, 14.816 GHz, and 16.848 GHz. The resonance phenomena are examined through equivalent circuit modeling and verified in Advanced Design Software (ADS). Metamaterial properties of the proposed MTM are extracted and it exhibits negative permittivity, permeability, and refractive index. The prototype of the MTM is fabricated and measurement is taken. The measured S21 shows a close similarity with the simulated result. Moreover, effective medium ratio (EMR) is calculated for the proposed MTM and a high EMR of 10.95 is obtained that expresses its compactness. This compact MTM with negative permittivity, permittivity, and refractive index can be important component for improving the performance of the miniaturized devices for multi-band wireless communication systems.

5.
Sci Rep ; 13(1): 7373, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147337

RESUMO

Metamaterials have gained much attention due to their exciting characteristics and potential uses in constructing valuable technologies. This paper presents a double negative square resonator shape metamaterial sensor to detect the material and its thickness. An innovative double-negative metamaterial sensor for microwave sensing applications is described in this paper. It has a highly sensitive Q-factor and has good absorption characteristics approximately equal to one. For the metamaterial sensor, the recommended measurement is 20 by 20 mm. Computer simulation technology (C.S.T.) microwave studios are used to design the metamaterial structure and figure out its reflection coefficient. Various parametric analyses have been performed to optimize the design and size of the structure. The experimental and theoretical results are shown for a metamaterial sensor that is attached to five different materials such as, Polyimide, Rogers RO3010, Rogers RO4350, Rogers RT5880, and FR-4. A sensor's performance is evaluated using three different thicknesses of FR-4. There is a remarkable similarity between the measured and simulated outcomes. The sensitivity values for 2.88 GHz and 3.5 GHz are 0.66% and 0.19%, respectively, the absorption values for both frequencies are 99.9% and 98.9%, respectively, and the q-factor values are 1413.29 and 1140.16, respectively. In addition, the figure of merit (FOM) is analyzed, and its value is 934.18. Furthermore, the proposed structure has been tested against absorption sensor applications for the purpose of verifying the sensor's performance. With a high sense of sensitivity, absorption, and Q-factor, the recommended sensor can distinguish between thicknesses and materials in various applications.

7.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837381

RESUMO

This article demonstrates a compact wideband four-port multiple-input-multiple-output (MIMO) antenna system integrated with a wideband metamaterial (MM) to reach high gain for sub-6 GHz new radio (NR) 5G communication. The four antennas of the proposed MIMO system are orthogonally positioned to the adjacent antennas with a short interelement edge-to-edge distance (0.19λmin at 3.25 GHz), confirming compact size and wideband characteristics 55.2% (3.25-5.6 GHz). Each MIMO system component consists of a fractal slotted unique patch with a transmission feed line and a metal post-encased defected ground structure (DGS). The designed MIMO system is realized on a low-cost FR-4 printed material with a miniature size of 0.65λmin × 0.65λmin × 0.02λmin. A 6 × 6 array of double U-shaped resonator-based unique mu-near-zero (MNZ) wideband metamaterial reflector (MMR) is employed below the MIMO antenna with a 0.14λmin air gap, improving the gain by 2.8 dBi and manipulating the MIMO beam direction by 60°. The designed petite MIMO system with a MM reflector proposes a high peak gain of 7.1 dBi in comparison to recent relevant antennas with high isolation of 35 dB in the n77/n78/n79 bands. In addition, the proposed wideband MMR improves the MIMO diversity and radiation characteristics with an average total efficiency of 68% over the desired bands. The stated MIMO antenna system has an outstanding envelope correlation coefficient (ECC) of <0.045, a greater diversity gain (DG) of near 10 dB (>9.96 dB), a low channel capacity loss (CCL) of <0.35 b/s/Hz and excellent multiplexing efficiency (ME) of higher than -1.4 dB. The proposed MIMO concept is confirmed by fabricating and testing the developed MIMO structure. In contrast to the recent relevant works, the proposed antenna is compact in size, while maintaining high gain and wideband characteristics, with strong MIMO performance. Thus, the proposed concept could be a potential approach to the 5G MIMO antenna system.

8.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838994

RESUMO

An oblique angle and polarization insensitive metamaterial absorber (MA) are highly desired for the visible and infrared optical applications like, wave energy harvesting, optical filters, and detecting thermal leaks and electrical defects. In this paper, a multi-layered MA consisting of two layers of tungsten resonators on a silicon dioxide substrate, coated with additional SiO2 materials is investigated. The unit cell size of the MA is 0.5λ × 0.5λ × 0.8λ, at the lowest wavelength. The proposed MA offers an average absorption of 92% from 400 nm to 2400 nm with stable oblique incident angles up to 45°. The structure also achieves polarization insensitivity at the entire visible and near-infrared spectrum. Moreover, the MA is found highly compatible for solar absorber applications with high y AAM1.5. The structure is also compatible for filter application in optical communication system by modifying the plasmonic nano structure. The modified structure can block the wavelengths of the visible band (450 nm to 800 nm) and transmit optical communication bands (800 to 1675 nm). These versatile absorption and filtering performance make the proposed design highly potential for solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications applications.

9.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770180

RESUMO

This paper reports a central spiral split-rectangular-shaped metamaterial absorber surrounded by a polarization-insensitive ring resonator for s-band applications. The rated absorption is 99.9% at 3.1 GHz when using a three-layer structure where the top and ground are made of copper and the center dielectric material is a commonly used FR-4 substrate. The central split gaps have an impact on the unit cell by increasing high absorption, and an adequate electric field is apparent in the outer split ring gap. At 3.1 GHz, the permittivity and permeability are negative and positive, respectively, so the proposed unit cell acts as an epsilon negative (ENG) metamaterial absorber. In a further analysis, Roger4450B was used as a substrate and obtained excellent absorption rates of 99.382%, 99.383%, 99.91%, and 95.17% at 1.44, 3.96, 4.205, and 5.025 GHz, respectively, in the S- and C-band regions. This unit cell acts as a single negative metamaterial (SNG) absorber at all resonance frequencies. The S11 and S21 parameters for FR-4 and Rogers4450B were simulated while keeping the polarization angle (θ and φ) at 15, 30, 45, 60, 75, and 90 degrees to measure, permittivity, permeability, reflective index, absorption, and reflection. The values of the reflective index are near zero. Near-zero reflective indexes (NZRI) are widely used in antenna gain propagation. The unit cell fabricated for the FR-4 substrate attained 99.9% absorption. S-band values in the range of (2-4) GHz can be applied for low-frequency radar detection.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770483

RESUMO

Massive multiple-input multiple-output (mMIMO) is a wireless access technique that has been studied and investigated in response to the worldwide bandwidth demand in the wireless communication sector (MIMO). Massive MIMO, which brings together antennas at the transmitter and receiver to deliver excellent spectral and energy efficiency with comparatively simple processing, is one of the main enabling technologies for the upcoming generation of networks. To actualize diverse applications of the intelligent sensing system, it is essential for the successful deployment of 5G-and beyond-networks to gain a better understanding of the massive MIMO system and address its underlying problems. The recent huge MIMO systems are highlighted in this paper's thorough analysis of the essential enabling technologies needed for sub-6 GHz 5G networks. This article covers most of the critical issues with mMIMO antenna systems including pilot realized gain, isolation, ECC, efficiency, and bandwidth. In this study, two types of massive 5G MIMO antennas are presented. These types are used depending on the applications at sub-6 GHz bands. The first type of massive MIMO antennas is designed for base station applications, whereas the most recent structures of 5G base station antennas that support massive MIMO are introduced. The second type is constructed for smartphone applications, where several compact antennas designed in literature that can support massive MIMO technology are studied and summarized. As a result, mMIMO antennas are considered as good candidates for 5G systems.

12.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677975

RESUMO

This article proposes a square split-ring resonator (SSRR) metamaterial absorber (MMA) for sub-6 GHz application. The unit cell of the MMA was designed and fabricated on commercially available low-cost FR-4 substrate material with a dielectric constant o 4.3. The higher effective medium ratio (EMR) of the designed unit cell shows the compactness of the MMA. The dimension of the unit cell is 9.5 × 9.5 × 1.6 mm3, which consists of two split rings and two arms with outer SSRR. The proposed MMA operates at 2.5 GHz, 4.9 GHz, and 6 GHz frequency bands with a 90% absorption peak and shows a single negative metamaterial property. The E-field, H-field, and surface current are also explored in support of absorption analysis. Moreover, the equivalent circuit model of the proposed MMA is modelled and simulated to validate the resonance behavior of the MMA structure. Finally, the proposed MMA can be used for the specific frequency bands of 5G applications such as signal absorption, crowdsensing, SAR reduction, etc.

13.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677980

RESUMO

The concept of nanosatellite technology becomes a viable platform for earth and space observation research to minimize cost and build time for the payload. The communication approach is the essential fundamental attribute of a satellite, of which the antenna is a crucial component for forming a communication link between the nanosatellite and the earth. The nanosatellite antenna must comply with some special requirements like compact size, lightweight, and high gain with a space-compatible structure. This paper proposes a compact metamaterial-based Ku-band antenna with circular polarization for the nanosatellite communication system. The designed antenna obtained an impedance bandwidth of 2.275 GHz with a realized gain of 6.74 dBi and 3 dB axial beamwidth of 165° at 12.10 GHz. The overall antenna size of the designed is 0.51λ × 0.51λ × 0.17λ, which is fabricated on Rogers 5880 substrate material. The antenna results performance has been examined with a 1 U nanosatellite structure and found suitable to integrate with metallic and nonmetallic surfaces of any miniature nanosatellite structure.

14.
Sci Rep ; 13(1): 1792, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720922

RESUMO

A hepta-band terahertz metamaterial absorber (MMA) with modified dual T-shaped resonators deposited on polyimide is presented for sensing applications. The proposed polarization sensitive MMA is ultra-thin (0.061 λ) and compact (0.21 λ) at its lowest operational frequency, with multiple absorption peaks at 1.89, 4.15, 5.32, 5.84, 7.04, 8.02, and 8.13 THz. The impedance matching theory and electric field distribution are investigated to understand the physical mechanism of hepta-band absorption. The sensing functionality is evaluated using a surrounding medium with a refractive index between 1 and 1.1, resulting in good Quality factor (Q) value of 117. The proposed sensor has the highest sensitivity of 4.72 THz/RIU for glucose detection. Extreme randomized tree (ERT) model is utilized to predict absorptivities for intermediate frequencies with unit cell dimensions, substrate thickness, angle variation, and refractive index values to reduce simulation time. The effectiveness of the ERT model in predicting absorption values is evaluated using the Adjusted R2 score, which is close to 1.0 for nmin = 2, demonstrating the prediction efficiency in various test cases. The experimental results show that 60% of simulation time and resources can be saved by simulating absorber design using the ERT model. The proposed MMA sensor with an ERT model has potential applications in biomedical fields such as bacterial infections, malaria, and other diseases.


Assuntos
Eletricidade , Aprendizado de Máquina , Simulação por Computador , Impedância Elétrica , Exame Físico
15.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144930

RESUMO

The concept of the nanosatellite comes into play in launching miniaturized versions of satellites or regarding payloads with minimizing cost and building time. The economic affordability of nanosatellites has been promoted with a view to launching various nanosatellite missions. The communication system is one of the most important aspects of a satellite. The antenna is a key element for establishing a communication link between the earth and the nanosatellite. The antenna and solar panel of the nanosatellite are two of the most vital components that profoundly impact antenna type and design. This paper proposes a non-deployable lower ultra-high frequency (UHF) antenna, strategically mounted on the satellite body, to address the constraints of deployment complexity and solar panel integration. The antenna was fabricated and performances measured with a 1U nanosatellite structure, which achieved resonance frequency at 401 MHz frequency bands with 0.672 dBi realized gain. The overall antenna size is 0.13λ × 0.13λ × 0.006λ. The major challenges addressed by the proposed antenna are to design a nanosatellite-compatible lower UHF antenna and to ensure solar irradiance into the solar panel to minimize input power scarcity.

16.
Materials (Basel) ; 15(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955182

RESUMO

In this paper, a compact wideband patch antenna comprising a modified electric-field-coupled resonator with parasitic elements is presented. The resonance at low frequency is achieved due to the electric field polarization along the split of the conventional LC (inductive-capacitive) structure. However, this antenna gives low bandwidth as well as low gain. Some evolutionary techniques are adopted to get a compact wideband antenna at 3GPP bands of 5G. The split width and the ground plane are modified to achieve enhanced bandwidth with good impedance matching, whereas the addition of the parasitic elements on both sides of the microstrip feed line enhances the gain with a slight reduction of bandwidth. The compact dimension of the proposed antenna is 0.26 λL × 0.26 λL × 0.017 λL, where λL is the free space wavelength at the lowest frequency. A prototype of the presented design is fabricated and measured. Measurement shows that the antenna has an operating bandwidth of 19.74% for |S11| < −10 dB where the gain of 1.15 dBi is realized. In addition, the radiation pattern is omnidirectional in the horizontal plane and dumbbell shaped in the elevation plane. The cross-polarization levels in both planes are less than −12 dB.

17.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014711

RESUMO

This article presents numerical analysis of an ultrathin concentric hexagonal ring resonator (CHRR) metamaterial absorber (MMA) for ultrawideband visible and infrared optical window applications. The proposed MMA exhibits an absorption of above 90% from 380 to 2500 nm and an average absorbance of 96.64% at entire operational bandwidth with a compact unit cell size of 66 × 66 nm2. The designed MMA shows maximum absorption of 99% at 618 nm. The absorption bandwidth of the MMA covers the entire visible and infrared optical windows. The nickel material has been used to design the top and bottom layer of MMA, where aluminium nitride (AlN) has been used as the substrate. The designed hexagonal MMA shows polarization-independent properties due to the symmetry of the design and a stable absorption label is also achieved for oblique incident angles up to 70 °C. The absorption property of hexagonal ring resonator MMA has been analyzed by design evaluation, parametric and various material investigations. The metamaterial property, surface current allocation, magnetic field and electric field have also been analyzed to explore the absorption properties. The proposed MMA has promising prospects in numerous applications like infrared detection, solar cells, gas detection sensors, imaging, etc.

18.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015943

RESUMO

An antenna assumes a significant role in expanding the levels of communication to meet the demands of contemporary technologically based industry and private data services. In this paper, a printed compact meander line patch antenna array for wireless local-area network (WLAN) applications in the frequency span of 2.3685-2.4643 GHz is presented. The impedance matching of the antenna is generated by applying a partial rectangular-shaped ground plane backside of the meander line antenna. The proposed antenna evolved on the Rogers RT5880 substrate with a dielectric permittivity of 2.2, and the height of the substrate was 1.575 mm to accomplish the lowest possible return loss. The proposed antenna was developed to achieve particular outcomes, for example, voltage standing wave ratio (VSWR) 1.32, reflection coefficient 20 dB with a bandwidth of 94.2 MHz, a gain of 2.8 dBi, and an efficacy measurement of 97%. This antenna is appropriate for WLAN applications that utilize a 2.4 GHz resonance frequency. The overall dimensions of the antenna are 15 mm × 90.86 mm.


Assuntos
Redes Locais , Tecnologia sem Fio , Comunicação , Impedância Elétrica , Desenho de Equipamento
19.
Sci Rep ; 12(1): 14311, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995831

RESUMO

An integrated massive multiple-input multiple-output (mMIMO) antenna system loaded with metamaterial (MTM) is proposed in this article for fifth-generation (5G) applications. Besides, achievement of duple negative (DNG) characteristics using a proposed compact complementary split-ring resonator (SRR), a broad epsilon negative metamaterial (ENG) with more than 1 GHz bandwidth (BW), and near-zero refractive index (NZRI) features are presented. The proposed mMIMO antenna consists of eight subarrays with three layers that operate in the 5G mind band at 3.5 GHz (3.40-3.65 GHz) with high port isolation between adjacent antenna elements compared to an antenna that does not use MTM. Each subarray has two patches on the top layer, while the middle and bottom layers have two categories of full and partial ground plans, respectively. Simulated, produced, and tested are 32 elements with a total volume of 184 × 340 × 1.575 mm3. The measured findings reveal that the sub-6 antenna has a better than 10 dB reflection coefficient (S11), a lower than 35 dB isolation, and a peak gain of 10.6 dBi for each subarray. Furthermore, the recommended antenna loaded with MTM has demonstrated good MIMO performance with an ECC of less than 0.0001, total efficiencies of more than 90%, more than 300 MHz bandwidth, and an overall gain of 19.5 dBi.


Assuntos
Desenho de Equipamento
20.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013815

RESUMO

A symmetric engineered high polarization-insensitive double negative (DNG) metamaterial (MM) reflector with frequency tunable features for fifth-generation (5G) antenna gain and directivity enhancement is proposed in this paper. Four identical unique quartiles connected by a metal strip are introduced in this symmetric resonator that substantially tunes the resonance frequency. The proposed design is distinguished by its unique symmetric architecture, high polarization insensitivity, DNG, and frequency tunable features while retaining a high effective medium ratio (EMR). Moreover, the suggested patch offers excellent reflectance in the antenna system for enhancing the antenna gain and directivity. The MM is designed on a Rogers RO3010 low loss substrate, covering the 5G sub-6GHz band with near-zero permeability and refractive index. The performance of the proposed MM is investigated using Computer Simulation Technology (CST), Advanced Design Software (ADS), and measurements. Furthermore, polarization insensitivity is investigated up to 180° angles of incidence, confirming the identical response. The 4 × 4 array of the MM has been utilized on the backside of the 5G antenna as a reflector, generating additional resonances that enhance the antenna gain and directivity by 1.5 and 1.84 dBi, respectively. Thus, the proposed prototype outperforms recent relevant studies, demonstrating its suitability for enhancing antenna gain and directivity in the 5G network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...