Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLOS Glob Public Health ; 4(4): e0003157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656991

RESUMO

Human Papillomavirus (HPV) self-sampling has been implemented successfully as an alternative to traditional forms of cervical cancer screening in low-resource settings. Through Bangladesh's current national cervical cancer screening program, only about 10% of the at-risk population is reached. Thus, Bangladesh is an ideal setting to consider HPV self-sampling to improve cervical cancer prevention efforts. However, the feasibility and acceptability of HPV self-sampling has not been evaluated in Bangladesh. We aimed to understand levels of HPV and cervical cancer knowledge and to evaluate the feasibility and acceptability of HPV self-sampling for cervical cancer screening in a semi-urban Bangladeshi community. Participants were recruited from a local clinic; 164 women completed a cross-sectional questionnaire about attitudes towards screening, and cervical cancer and HPV risk factor knowledge, and provided self-collected cervical samples for high-risk HPV testing. Of the participants, 4.3% tested positive for high-risk HPV and were referred for appropriate follow-up care. Nearly all participants had heard of cervical cancer, though specific knowledge was quite low. Self-sampling for high-risk HPV testing had high rates of acceptability, high rates of convenience, and very little discomfort and embarrassment reported in this study population, making implementing HPV self-sampling as a form of cervical cancer screening in Bangladesh appear feasible.

2.
Biomed Phys Eng Express ; 10(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38430572

RESUMO

Background and Objective. Coronary artery geometry heavily influences local hemodynamics, potentially leading to atherosclerosis. Consequently, the unique geometrical configuration of an individual by birth can be associated with future risk of atherosclerosis. Although current researches focus on exploring the relationship between local hemodynamics and coronary artery geometry, this study aims to identify the order of influence of the geometrical features through systematic experiments, which can reveal the dominant geometrical feature for future risk assessment.Methods. According to Taguchi's method of design of experiment (DoE), the left main stem (LMS) length (lLMS), curvature (kLMS), diameter (dLMS) and the bifurcation angle between left anterior descending (LAD) and left circumflex (LCx) artery (αLAD-LCx) of two reconstructed patient-specific left coronary arteries (LCA) were varied in three levels to create L9 orthogonal array. Computational fluid dynamic (CFD) simulations with physiological boundary conditions were performed on the resulting eighteen LCA models. Average helicity intensity (h2) and relative atheroprone area (RAA) of near-wall hemodynamic descriptors were analyzed.Results. The proximal LAD (LADproximal) was identified to be the most atheroprone region of the left coronary artery due to higherh2,large RAA of time averaged wall shear stress (TAWSS < 0.4 Pa), oscillatory shear index (OSI ∼ 0.5) and relative residence time (RRT > 4.17 Pa-1). In both patient-specific cases, based onh2and TAWSS,dlmsis the dominant geometric parameter while based on OSI and RRT,αLAD-LCxis the dominant one influencing hemodynamic condition in proximal LAD (p< 0.05). Based on RRT, the rank of the geometrical factors is:αLAD-LCx>dLMS>lLMS>kLMS, indicating thatαLAD-LCxis the most dominant geometrical factor affecting hemodynamics at proximal LAD which may influence atherosclerosis.Conclusion. The proposed identification of the rank of geometrical features of LCA and the dominant feature may assist clinicians in predicting the possibility of atherosclerosis, of an individual, long before it will occur. This study can further be translated to be used to rank the influence of several arterial geometrical features at different arterial locations to explore detailed relationships between the arterial geometrical features and local hemodynamics.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Humanos , Hemodinâmica , Estresse Mecânico
3.
Health Sci Rep ; 7(2): e1910, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420203

RESUMO

Background and Aims: The global significance of water, sanitation, and hygiene (WASH) cannot be overstated, extending far beyond the confines of developing nations and encompassing even the most developed ones. This study, rooted in the Bihari refugee camp in Bangladesh, seeks to underscore the universality of WASH concerns. Methods: Using a cross-sectional design and a structured questionnaire, we conducted a meticulous evaluation of WASH practices with 313 participants selected through random sampling. Results: Findings shows the water practice, among all of them, only 4.8% of the respondents were very happy with the water supply system and 16.0% of the respondents were happy with this. A total of 29.7% of the respondents were satisfied with safe drinking water and only 4.8% of the respondents were very satisfied with safe drinking water. Regarding the hygiene practice, among all respondents, 10.2% of them were satisfied with using the same bathroom by multiple people. Only 5.4% respondents were happy in their living environment. Regarding sanitation practice, only 31.3% had private toilet facilities. Among all of the respondents, 13.7% of the respondents were satisfied with using the same toilet by multiple people. Respondents who were illiterate (p < 0.01) and self-employed (p < 0.04) were satisfied with the water supply. Similarly, respondents who were illiterate (p < 0.03) and self-employed (p < 0.00) were satisfied with safe drinking water. Respondents who were illiterate (p < 0.02) and whose monthly income was below 8000 BDT (p < 0.00) were satisfied using same bathroom by multiple people. Respondents who were self-employed (p < 0.01), whose monthly income 8000-12,000 BDT (p < 0.01) and having single room (p < 0.00) were satisfied using the same toilet by multiple people. Conclusion: Enhanced access to safe WASH facilities, coupled with a comprehensive understanding of the study's findings, have the potential to serve as vital signposts for the development and implementation of policies and interventions.

4.
Front Microbiol ; 15: 1326696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322315

RESUMO

While the primary pathogenic potential of torque teno viruses (TTVs) is yet to be defined, TTVs are often co-detected with other pathogens and are suspected of exacerbating clinical disease in coinfections. Swine TTVs (TTSuVs) enhance clinical signs of porcine circovirus type 2 (PCV2) in a gnotobiotic pig model. However, the mechanisms involved are unknown. In this study, we observed that co-culture of TTSuV1 and PCV1, and specifically supplementing TTSuV1 cultures with the PCV replicase protein in trans consistently resulted in higher levels of replication of TTSuV1 when compared to TTSuV1 cultured alone. Therefore, the hypothesis that the PCV replicase (rep) protein has trans-replicase helper activity for TTSuV1 was examined. Based on EMSA and reporter gene assays, it was determined that the PCV1 rep directly interacted with the TTSuV1 UTR. The TTSuV1 rep trans-complemented a PCV rep null mutant virus, indicating that the TTSuV1 and PCV1 replicase proteins supported the replication of both viruses. In mice, the administration of plasmids encoding the PCV1 rep and a TTSuV1 infectious clone resulted in the production of higher TTSuV1 genome copies in dually exposed mice when compared to singly exposed mice. Higher sero-conversion and lymphoid hyperplasia were also observed in the dually exposed experimental mice. Thus, this study provides evidence for trans-replicase activity of PCVs and TTVs as a novel mechanism of explaining enhanced viral replication in coinfections involving both viruses.

5.
Cureus ; 15(8): e43808, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37731426

RESUMO

Background  Medical simulation allows clinicians to safely practice the procedural skill of endotracheal intubation. Applied force to oropharyngeal structures increases the risk of patient harm, and video laryngoscopy (VL) requires less force to obtain a glottic view. It is unknown how much force is required to obtain a glottic view using commercially available simulation manikins and if variability exists. This study compares laryngoscopy force for a modified Cormack-Lehane (CL) grade I view in both normal and difficult airway scenarios between three commercially available simulation manikins. Methods Experienced clinicians (≥2 years experience) were recruited to participate from critical care, emergency medicine, and anesthesia specialties. A C-MAC size 3 VL blade was equipped with five force resistor reading (FSR) sensors (four concave surfaces, one convex), measuring resistance (Ohms) in response to applied pressure (1-100 Newtons). The study occurred in a university simulation lab. Using a randomized sequence, 49 physicians performed intubations on three manikins (Laerdal SimMan 3GPlus, Gaumard Hal S3201, CAE Apollo) in normal and difficult airway scenarios. The outcomes were sensor mean pressure, peak force, and CL grade. Summary statistics were calculated. Generalized estimating equations (GEEs) conducted for both scenarios assessed changes in pressure measured in three manikins while accounting for correlated responses of individuals assigned in random order. Paired t-test assessed for the in-manikin difference between scenarios. STATA/BE v17 (R) was used for analysis; results interpreted at type I error alpha is 0.05.  Results Participants included 49 experienced clinicians. Mean years' experience was 4(±6.6); median prior intubations were 80 (IQR 50-400). Mean individual sensor pressure varied within scenarios depending on manikin (p<0.001). Higher mean forces were used in difficult scenarios (603.4±128.9, 611.1±101.4, 467.5±72.4 FSR) than normal (462.5±121.9, 596.0±90.5, 290.6±63.2 FSR) for each manikin (p<0.001). All manikins required more peak force in the difficult scenario (p<0.03). The highest mean forces (Laerdal, CAE, difficult scenario) were associated with the higher frequency of grade 2A views (p<0.001). The Gaumard manikin was rated most realistic in terms of force required to intubate. Conclusion Commercially available high-fidelity manikins had significant variability in laryngoscopy force in both normal and difficult airway scenarios. In difficult airway scenarios, significant variability existed in CL grade between manikin brands. Experienced clinicians rated Gaumard Hal as the most realistic force applied during endotracheal intubation.

6.
Photochem Photobiol Sci ; 22(11): 2675-2686, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530937

RESUMO

Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created opportunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI applications in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges in the field.


Assuntos
Praguicidas , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Agricultura/métodos , Praguicidas/química , Praguicidas/farmacologia , Plantas
7.
Heliyon ; 9(6): e17368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441399

RESUMO

The central coast of Bangladesh is dynamic for its geographical location, hydrodynamic characteristics and residual flow. The research employed the Digital Shoreline Analysis System (DSAS), an ArcGIS extension tool, to conduct a historical trend analysis of shoreline. The study demonstrates that the central coast is eroding to the north and accreting to the south. The highest accretion value was found as 195.42 m/year, whereas the maximum value of erosion was estimated as -185.83 m/year, according to End Point Rate (EPR). The Linear Regression Rate (LRR) indicates that the average rate of erosion and accretion are -17.77 m/year and 17.88 m/year, respectively. Meanwhile, using Weighted Linear Regression (WLR), 0.48% of all transects demonstrated statistically significant erosion, while 0.43% showed statistically significant accretion. During the wet season, heavy river discharge leads to a low salt level in the ocean. Ocean currents hit central coast of Bangladesh from east to west, affecting the majority of the islands in the Meghna Estuary in the dry season. Changes in current directions can be seen during the wet seasons. Southern central coast areas are hit by south-east currents that split in two directions. The Sandwip Channel has a flow of 10,000 to 15,000 m³ s-1 northward. The Tetulia River, Shahbazpur Channel, and Hatia-Sandwip flow southward at rates ranging from 3000 to 17,000 m³ s-1, 14,000 to 60,000 m³ s-1, and 7000 to 39,000 m³ s-1, respectively. In the Meghna Estuary, the combined forces result in a counter-clockwise residual circulation, with the northward flow in the Sandwip channel and southbound flow in the Hatia and Shahbazpur channels. As a result of hydrodynamic, ocean currents, and residual flow, the Central Coast of Bangladesh is continually changing in appearance.

8.
Heliyon ; 9(6): e16562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292307

RESUMO

Bangladesh Road Transport Authority announced a plan to build a bridge over the Lohalia River in Boga, Patuakhali, which will significantly modify the entire communication system and lead to significant economic empowerment in the southeastern part of Bangladesh. This study was designed to help decision-makers through the identification and evaluation of all potential social and environmental consequences of this proposed project using an integrated methodology combining GIS mapping, environmental impact value assessment, and critical evaluation of the environmental impact through the Leopold matrix. The necessary information required for this study has been collected through questionnaire surveys, participatory community risk assessments (CRA), focused group discussions, key informant interviews, and reviews of previously published documents. According to this study, the proposed Boga Bridge construction will have some adverse environmental consequences including agricultural land and productivity loss, the decline of ecosystem health, extinction of endangered species, deterioration of water, air and soil quality, sedimentation and changes in river flow. Despite these adverse impacts this project will improve the life and livelihood of the coastal community and foster economic growth and industrialization over the long run through easily assessable road transportation. Additionally, the estimated overall environmental impact value (-2) and Leopold matrix's impact value (-1.51) revealed that this project has low adverse effects on the surrounding environment. Moreover, the majority of the environmental consequences were found to be transient because they were only limited to the construction phase which makes it simple to control with the proper implementation of appropriate mitigation strategies. Therefore, this study furnished some effective mitigation strategies incorporating mitigation hierarchy principals to avoid and minimize adverse impacts as well as enhance the positive impacts of this project. Finally, this study recommends constructing the proposed Boga Bridge after ensuring rigorous implementation and monitoring of all impact mitigation strategies proposed in this study.

9.
Heliyon ; 9(5): e15747, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206050

RESUMO

Considering the health risks originating from the exposure of metal(loid)s in tap-water and the concomitant vulnerability of school-going students, 25 composite tap water samples from different schools and colleges of central Bangladesh (Mirpur, Dhaka) were analyzed by atomic absorption spectroscopic technique. Elemental abundances of Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb in the studied tap water samples varied from 4520 to 62250, 2760-29580, 210-3000, 15780-78130, 1.54-5.32, 7.00-196, 2.00-450, 0.04-1.45, 8.23-24.4, 0.10-813, 0.10-10.5, 0.002-0.212, and 1.55-15.8 µgL-1, respectively. Dissolved metal(loid)s' concentrations were mostly within the national and international threshold values with few exceptions which were also consistent with the entropy-based water quality assessment. Multivariate statistical approaches demonstrated that hydro-geochemical processes like water-rock interactions mostly govern the major elemental (Na, Mg, K, Ca) compositions in tap water. However, anthropogenic processes typically control the trace elemental compositions where supply pipeline scaling was identified as the major source. Cluster analysis on sampling sites separated two groups of schools and colleges depending on their establishment years where tap water from older schools and colleges possesses relatively higher levels of metal(loid)s. Hence, gradual pipeline scaling on a temporal scale augmented the metal(loid)s' concentrations in tap-water. In terms of non-carcinogenic health risks estimation, studied tap-water seems to be safe, whereas elemental abundances of Pb and As can cause carcinogenic risks to school-going people. However, progressive deterioration of water quality by pipeline scaling will be supposed to cause significant health risks in the future, for which preventative measures should be adopted.

10.
Front Oncol ; 12: 923270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338727

RESUMO

Ubiquitin-specific protease 8 (USP8) has been recently reported to be involved in tumorigenesis. Prostate cancer (PCa) is the most diagnosed malignancy among men, but USP8's role in PCa is not yet investigated comprehensively. Therefore, the PCa cell lines DU145 and PC3 were transfected with USP8 siRNA or overexpressing vector together with or without docetaxel. The silencing USP8 and docetaxel treatment reduced cell viability and migration and promoted apoptosis. In contrast, USP8 knockdown was found to enhance docetaxel antitumor activity. In contrast, increased cell viability and migration were noticed upon USP8 overexpression, thereby decreasing apoptosis and suppressing docetaxel antitumor activity. Notably, although EGFR, PI3K, and NF-kB were found to be increased in both USP8 overexpression and docetaxel treatment, it significantly attenuated the effects in USP8 silencing followed by with or without docetaxel. Although EGFR silencing decreased PI3K and NF-kB activation, overexpression of USP8 was shown to counteract SiEGFR's effects on NF-kB signaling by increasing PI3K expression. Our findings revealed that USP8 plays an oncogenic role in PCa and can suppress docetaxel activity. Additionally, as EGFR/PI3K/NF-kB was previously reported to develop docetaxel resistance, the combination treatment of USP8 knockdown with docetaxel might be a potential PCa therapeutic.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3392-3395, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086237

RESUMO

Ambulatory respiration signal extraction system is required to maintain continuous surveillance of a patient with respiratory deficiency. The capnograph signal has received a lot of attention in recent years as a valuable indicator of respiratory conditions. However, the typical capnograph signal extraction method is quite expensive and also unpleasant to the patient due to the involvement of a nasal cannula. With the advent of wearable sensor technology, there has been significant research on the use of photoplethysmogram (PPG) signals as a less expensive alternative to extract respiratory information. In this paper, we propose CapNet, a novel deep learning-based framework which takes the regular PPG signal as input, and estimates the capnograph signal as output. Training, validation and testing of the proposed networks in CapNet is done using the IEEE TMBE Respiratory Rate Benchmark dataset by utilizing reference capnograph respiration signals. With a lower MSE and higher cross-correlation values, CapNet outperforms two traditional signal processing algorithms and another recently proposed deep neural network, RespNet. The proposed framework expectantly can be implementable and feasible for constant supervising of patients undergoing respiratory ailments.


Assuntos
Aprendizado Profundo , Fotopletismografia , Capnografia , Humanos , Fotopletismografia/métodos , Taxa Respiratória , Processamento de Sinais Assistido por Computador
12.
Plant Dis ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040229

RESUMO

Control of plant pathogens using chemical and synthetic pesticides raises a major safety concern for humans and the environment. Despite the ongoing exploration of sustainable alternative methods, management practices for pathogens, especially bacteria, have remained almost unchanged over decades, whereby long-term uses of copper and antibiotics has led to widespread bacterial resistance in the field. Antimicrobial photodynamic inactivation (aPDI) of bacteria is emerging as an alternative strategy to combat resistant plant pathogens. aPDI utilizes light-sensitive molecules (photosensitizers) that upon illumination produce reactive oxygen species able to kill pathogens. Here we explore the potential of an anionic semisynthetic water-soluble derivative of chlorophyl (Sodium Magnesium Chlorophyllin: Mg-chl), as an antibacterial agent in planta, by simulating processes naturally occurring in the field. Mg-chl in combination with Na2EDTA (cell wall permeabilizing agent) was able to effectively inhibit Pseudomonas syringae pv. tomato DC3000 in vitro and in planta in both tomato and N. benthamiana. Notably, Mg-chl in combination with Na2EDTA and the common surfactant Morwet D-400 significantly reduced Xanthomonas hortorum pv. gardneri and Xanthomonas fragarie, respectively, in a commercial greenhouse trial against bacterial spot disease in tomato and in field experiments against angular leaf spot disease in strawberries.

14.
Commun Biol ; 5(1): 329, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393509

RESUMO

South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
15.
Ann Oper Res ; 315(2): 1703-1728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32421063

RESUMO

This study develops an inventory model to solve the problems of supply uncertainty in response to demand which follows a Poisson distribution. A positive aspect of this model is the consideration of random inventory, delivery capacities and supplier's reliability. Additionally, we assume supplier capacity follows an exponential distribution. This inventory model addresses the problem of a manufacturer having an imperfect production system with single supplier and single retailer and considers the quantity of product (Q), reorder points (r) and reliability factors (n) as the decision variables. The main contribution of our study is that we consider supplier may not be able to deliver the exact amount all the time a manufacturer needed. We also consider that the demand and the time interval between successive availability and unavailability of supplier and retailer follows a probability distribution. We use a genetic algorithm to find the optimal solution and compare the results with those obtained from simulated annealing algorithm. Findings reveal the optimal value of the decision variables to maximize the average profit in each cycle. Moreover, a sensitivity analysis was carried out to increase the understanding of the developed model. The methodology used in this study will help manufacturers to have a better understanding of the situation through the joint consideration of disruption of both the supplier and retailer integrated with random capacity and reliability.

16.
Environ Sci Pollut Res Int ; 29(13): 18591-18604, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34697708

RESUMO

This study aims to address the economic, social, and environmental wellbeing issues simultaneously by measuring the carbon intensity of wellbeing (CIWB) of Asian economies employing Prais-Winsten and pooled OLS estimator. The measure of CIWB is made taking into account a ratio of the two indicators-CO2 emissions per capita and life expectancy at birth. There is a paucity of studies that concentrate on human and social wellbeing indicators (i.e., water, sanitation, life expectancy) together applying the Environmental Kuznets Curve (EKC) hypothesis. Therefore, we have also investigated the EKC hypothesis as this theory hypothesizes the link involving human and environmental wellbeing and development. The findings utilizing the two econometric techniques indicate that in both the estimation models urban population access to an improved water source and total population access to improved water source has consistently negative and significant effects on CIWB. The fertility rate and prevalence of HIV pose no threat to CIWB. These findings demonstrate that social and human wellbeing indicators of the Asian economies are sustainable to this moment as they are lowering CIWB which is desirable. Contrary, GDP per capita, exports as a percent of GDP, and urban population have a significant and positive impact on CIWB which poses a challenge for the sustainability issue. We also have found the existence of the EKC hypothesis indicating environmental quality will increase past a turning point. The findings of the paper are well matched with the view of the "Economic and ecological modernization" theory and "human ecology" theory.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Carbono , Humanos , Recém-Nascido , Expectativa de Vida , Modelos Teóricos
17.
Arch Comput Methods Eng ; 29(1): 129-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33935484

RESUMO

Covid-19 has given one positive perspective to look at our planet earth in terms of reducing the air and noise pollution thus improving the environmental conditions globally. This positive outcome of pandemic has given the indication that the future of energy belong to green energy and one of the emerging source of green energy is Lithium-ion batteries (LIBs). LIBs are the backbone of the electric vehicles but there are some major issues faced by the them like poor thermal performance, thermal runaway, fire hazards and faster rate of discharge under low and high temperature environment,. Therefore to overcome these problems most of the researchers have come up with new methods of controlling and maintaining the overall thermal performance of the LIBs. The present review paper mainly is focused on optimization of thermal and structural design parameters of the LIBs under different BTMSs. The optimized BTMS generally demonstrated in this paper are maximum temperature of battery cell, battery pack or battery module, temperature uniformity, maximum or average temperature difference, inlet temperature of coolant, flow velocity, and pressure drop. Whereas the major structural design optimization parameters highlighted in this paper are type of flow channel, number of channels, length of channel, diameter of channel, cell to cell spacing, inlet and outlet plenum angle and arrangement of channels. These optimized parameters investigated under different BTMS heads such as air, PCM (phase change material), mini-channel, heat pipe, and water cooling are reported profoundly in this review article. The data are categorized and the results of the recent studies are summarized for each method. Critical review on use of various optimization algorithms (like ant colony, genetic, particle swarm, response surface, NSGA-II, etc.) for design parameter optimization are presented and categorized for different BTMS to boost their objectives. The single objective optimization techniques helps in obtaining the optimal value of important design parameters related to the thermal performance of battery cooling systems. Finally, multi-objective optimization technique is also discussed to get an idea of how to get the trade-off between the various conflicting parameters of interest such as energy, cost, pressure drop, size, arrangement, etc. which is related to minimization and thermal efficiency/performance of the battery system related to maximization. This review will be very helpful for researchers working with an objective of improving the thermal performance and life span of the LIBs.

18.
Front Insect Sci ; 2: 971221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468776

RESUMO

The spotted lanternfly, a newly invasive insect in the U.S. that is a great concern for the grapevine industry, produces damage on its host plants through aggressive feeding, using a piercing and sucking method to feed on the phloem of plants. In the eastern US, adult SLF can invade vineyards through fruit ripening until the end of the growing season; however, it is still unclear how prolonged late-season SLF feeding can affect the health of grapevines, as well as the host responses to this extensive damage. Thus, we have performed a comprehensive genome-wide transcriptome analysis in grapevines heavily infested by the spotted lanternfly, as it occurs in Pennsylvania vineyards, and compared it to other relevant transcriptomes in grapes with different degrees to susceptibility to similar pests. Among a variety of plant responses, we highlight here a subset of relevant biological pathways that distinguish or are common to the spotted lanternfly and other phloem feeders in grapevine. The molecular interaction between spotted lanternfly and the vine begins with activation of signal transduction cascades mediated mainly by protein kinase genes. It also induces the expression of transcription factors in the nucleus, of other signaling molecules like phytohormones and secondary metabolites, and their downstream target genes responsible for defense and physiological functions, such as detoxification and photosynthesis. Grapevine responses furthermore include the activation of genes for cell wall strengthening via biosynthesis of major structural components. With this study, we hope to provide the regulatory network to explain effects that the invasive spotted lanternfly has on grapevine health with the goal to improve its susceptibility.

19.
Langmuir ; 37(18): 5699-5706, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33900778

RESUMO

Blending TiO2 and cement to create photocatalytic composites holds promise for low-cost, durable water treatment. However, the efficiency of such composites hinges on cross-effects of several parameters such as cement composition, type of photocatalyst, and microstructure, which are poorly understood and require extensive combinatorial tests to discern. Here, we report a new combinatorial data science approach to understand the influence of various photocatalytic cement composites based on limited datasets. Using P25 nanoparticles and submicron-sized anatase as representative TiO2 photocatalysts and methyl orange and 1,4-dioxane as target organic pollutants, we demonstrate that the cement composition is a more influential factor on photocatalytic activity than the cement microstructure and TiO2 type and particle size. Among the various cement constituents, belite and ferrite had strong inverse correlation with photocatalytic activity, while natural rutile had a positive correlation, which suggests optimization opportunities by manipulating the cement composition. These results were discerned by screening 7806 combinatorial functions that capture cross-effects of multiple compositional phases and obtaining correlation scores. We also report •OH radical generation, cement aging effects, TiO2 leaching, and strategies to regenerate photocatalytic surfaces for reuse. This work provides several nonintuitive correlations and insights on the effect of cement composition and structure on performance, thus advancing our knowledge on development of scalable photocatalytic materials for drinking water treatment in rural and resource-limited areas.

20.
Plants (Basel) ; 10(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806070

RESUMO

To date, managing salinity stress in agriculture relies heavily on development of salt tolerant plant varieties, a time-consuming process particularly challenging for many crops. Plant based biostimulants (PBs) that enhance plant defenses under stress can potentially address this drawback, as they are not crop specific and are easy to apply in the field. Unfortunately, limited knowledge about their modes of action makes it harder to utilize them on a broader scale. Understanding how PBs enhance plant defenses at cellular and molecular levels, is a prerequisite for the development of sustainable management practices utilizing biostimulants to improve crop health. In this study we elucidated the protective mechanism of copper chlorophyllin (Cu-chl), a PB, under salinity stress. Our results indicate that Cu-chl exerts protective effects primarily by decreasing oxidative stress through modulating cellular H2O2 levels. Cu-chl treated plants increased tolerance to oxidative stress imposed by an herbicide, methyl viologen dichloride hydrate as well, suggesting a protective role against various sources of reactive oxygen species (ROS). RNA-Seq analysis of Cu-chl treated Arabidopsis thaliana seedlings subjected to salt stress identified genes involved in ROS detoxification, and cellular growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...