Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8910, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632259

RESUMO

Landfill leachate forms when waste-inherent water and percolated rainfall transfer are highly toxic, corrosive, acidic, and full of environmental pollutants. The release of leachate from municipal solid waste (MSW) landfill sites poses a severe hazard to human health and aquatic life. This study examined the impact of leachate from Delhi's Ghazipur landfill on the nearby groundwater quality. Analysis of leachate samples was done to determine various parameters such as total dissolved solids (TDS), hardness, alkalinity, electrical conductivity, pH, BOD5, COD, nitrate, sulphate, chloride and iron, and presence of coliform bacteria. Significant dissolved elements (22,690-34,525 mg/L) were observed in the samples, indicated by the high conductivity value (1156-1405 mho/cm). However, a stable pH range (6.90-7.80) of leachate samples was observed due to high alkalinity concentrations between 2123 and 3256 mg/L. The inverse distance weighing (IDW) interpolation tool from QGIS 3.22.7 developed spatial interpolated models for each parameter across the Ghazipur area. The IDW interpolated graphs of various parameters over the whole study area confirmed these contaminations. In addition, leachate and groundwater samples were physio-chemically analyzed, and temporal fluctuation in landfill waste has also been studied. The temporal fluctuation results showed that when heat is produced, transmitted, and lost throughout the waste system, the maximum temperature position fluctuates over time. The findings of this study highlight the critical importance of landfill management in reducing groundwater contamination from MSW leachate.

2.
Sci Rep ; 14(1): 5381, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443485

RESUMO

The qualitative and quantitative assessment of groundwater is one of the important aspects for determining the suitability of potable water. Therefore, the present study has been performed to evaluate the groundwater quality for Achhnera block in the city of Taj, Agra, India, where groundwater is an important water resource. The groundwater samples, 50 in number were collected and analyzed for major ions along with some important trace element. This study has further investigated for the applicability of groundwater quality index (GWQI), and the principal component analysis (PCA) to mark out the major geochemical solutes responsible for origin and release of geochemical solutes into the groundwater. The results confirm that, majority of the collected groundwater samples were alkaline in nature. The variation of concentration of anions in collected groundwater samples were varied in the sequence as, HCO3- > Cl- > SO42- > F- while in contrast the sequence of cations in the groundwater as Na > Ca > Mg > K. The Piper diagram demonstrated the major hydro chemical facies which were found in groundwater (sodium bicarbonate or calcium chloride type). The plot of Schoellar diagram reconfirmed that the major cations were Na+ and Ca2+ ions, while in contrast; major anions were bicarbonates and chloride. The results showed water quality index mostly ranged between 105 and 185, hence, the study area fell in the category of unsuitable for drinking purpose category. The PCA showed pH, Na+, Ca2+, HCO3- and fluoride with strong loading, which pointed out geogenic source of fluoride contamination. Therefore, it was inferred that the groundwater of the contaminated areas must be treated and made potable before consumption. The outcomes of the present study will be helpful for the regulatory boards and policymaker for defining the actual impact and remediation goal.

3.
Sci Rep ; 13(1): 18971, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923921

RESUMO

This study quantifies the groundwater fluoride contamination and assesses associated health risks in fluoride-prone areas of the city of Taj Mahal, Agra, India. The United States Environmental Protection Agency (USEPA) risk model and Monte Carlo Simulations were employed for the assessment. Result revealed that, among various rural and urban areas Pachgain Kheda exhibited the highest average fluoride concentration (5.20 mg/L), while Bagda showed the lowest (0.33 mg/L). Similarly, K.K. Nagar recorded 4.38 mg/L, and Dayalbagh had 1.35 mg/L. Both urban and rural areas exceeded the WHO-recommended limit of 1.5 mg/L, signifying significant public health implications. Health risk assessment indicated a notably elevated probability of non-carcinogenic risk from oral groundwater fluoride exposure in the rural Baroli Ahir block. Risk simulations highlighted that children faced the highest health risks, followed by teenagers and adults. Further, Monte Carlo simulation addressed uncertainties, emphasizing escalated risks for for children and teenagers. The Hazard Quotient (HQ) values for the 5th and 95th percentile in rural areas ranged from was 0.28-5.58 for children, 0.15-2.58 for teenager, and 0.05-0.58 for adults. In urban areas, from the range was 0.53 to 5.26 for children, 0.27 to 2.41 for teenagers, and 0.1 to 0.53 for adults. Physiological and exposure variations rendered children and teenagers more susceptible. According to the mathematical model, calculations for the non-cancerous risk of drinking water (HQ-ing), the most significant parameters in all the targeted groups of rural areas were concentration (CW) and Ingestion rate (IR). These findings hold relevance for policymakers and regulatory boards in understanding the actual impact and setting pre-remediation goals.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Adolescente , Humanos , Fluoretos/efeitos adversos , Fluoretos/análise , Método de Monte Carlo , Poluentes Químicos da Água/análise , Água Potável/análise , Índia , Medição de Risco , Monitoramento Ambiental
4.
BMJ Open ; 12(11): e066653, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36410810

RESUMO

OBJECTIVES: The study aimed to determine the seroprevalence, the fraction of asymptomatic infections, and risk factors of SARS-CoV-2 infections among the Forcibly Displaced Myanmar Nationals (FDMNs). DESIGN: It was a population-based two-stage cross-sectional study at the level of households. SETTING: The study was conducted in December 2020 among household members of the FDMN population living in the 34 camps of Ukhia and Teknaf Upazila of Cox's Bazar district in Bangladesh. PARTICIPANTS: Among 860 697 FDMNs residing in 187 517 households, 3446 were recruited for the study. One individual aged 1 year or older was randomly selected from each targeted household. PRIMARY AND SECONDARY OUTCOME MEASURES: Blood samples from respondents were tested for total antibodies for SARS-CoV-2 using Wantai ELISA kits, and later positive samples were validated by Kantaro kits. RESULTS: More than half (55.3%) of the respondents were females, aged 23 median (IQR 14-35) years and more than half (58.4%) had no formal education. Overall, 2090 of 3446 study participants tested positive for SARS-CoV-2 antibody. The weighted and test adjusted seroprevalence (95% CI) was 48.3% (45.3% to 51.4%), which did not differ by the sexes. Children (aged 1-17 years) had a significantly lower seroprevalence 38.6% (95% CI 33.8% to 43.4%) compared with adults (58.1%, 95% CI 55.2% to 61.1%). Almost half (45.7%, 95% CI 41.9% to 49.5%) of seropositive individuals reported no relevant symptoms since March 2020. Antibody seroprevalence was higher in those with any comorbidity (57.8%, 95% CI 50.4% to 64.5%) than those without (47.2%, 95% CI 43.9% to 50.4%). Multivariate logistic regression analysis of all subjects identified increasing age and education as risk factors for seropositivity. In children (≤17 years), only age was significantly associated with the infection. CONCLUSIONS: In December 2020, about half of the FDMNs had antibodies against SARS-CoV-2, including those who reported no history of symptoms. Periodic serosurveys are necessary to recommend appropriate public health measures to limit transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Adulto , Feminino , Humanos , Masculino , Estudos Soroepidemiológicos , Estudos Transversais , Bangladesh/epidemiologia , Mianmar/epidemiologia , COVID-19/epidemiologia , Anticorpos Antivirais
5.
Sensors (Basel) ; 22(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684612

RESUMO

We present TIMo (Time-of-flight Indoor Monitoring), a dataset for video-based monitoring of indoor spaces captured using a time-of-flight (ToF) camera. The resulting depth videos feature people performing a set of different predefined actions, for which we provide detailed annotations. Person detection for people counting and anomaly detection are the two targeted applications. Most existing surveillance video datasets provide either grayscale or RGB videos. Depth information, on the other hand, is still a rarity in this class of datasets in spite of being popular and much more common in other research fields within computer vision. Our dataset addresses this gap in the landscape of surveillance video datasets. The recordings took place at two different locations with the ToF camera set up either in a top-down or a tilted perspective on the scene. Moreover, we provide experimental evaluation results from baseline algorithms.


Assuntos
Algoritmos , Humanos
6.
Sci Adv ; 8(13): eabk1514, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353574

RESUMO

Resistive random access memory (RRAM) is an important candidate for both digital, high-density data storage and for analog, neuromorphic computing. RRAM operation relies on the formation and rupture of nanoscale conductive filaments that carry enormous current densities and whose behavior lies at the heart of this technology. Here, we directly measure the temperature of these filaments in realistic RRAM with nanoscale resolution using scanning thermal microscopy. We use both conventional metal and ultrathin graphene electrodes, which enable the most thermally intimate measurement to date. Filaments can reach 1300°C during steady-state operation, but electrode temperatures seldom exceed 350°C because of thermal interface resistance. These results reveal the importance of thermal engineering for nanoscale RRAM toward ultradense data storage or neuromorphic operation.

7.
Empir Econ ; 63(3): 1403-1455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34873364

RESUMO

We propose a novel risk measure that is built on comparing high-frequency time-varying volatility and low-frequency return spillover estimates. This measure permits to identify the markets that are epidemic in their complex interdependence. We conjecture that initially a highly volatile market experiences episodes of risk transmission, but only later absorbs risk and becomes an epidemic market. Moreover, we can detect newly emerging 'contagion' in the system. We examine the behaviour of 30 global equity markets and compare spillover measures, which encapsulate many large and small crises episodes. Instead of relying on ex post crisis information, our model identifies crises periods. An important implication of the proposed approach is that highly interrelated markets, such as China, are less likely to transmit a global economic crisis under the current interdependence setting.

8.
Nat Commun ; 12(1): 7034, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887383

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

9.
Science ; 373(6560): 1243-1247, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516795

RESUMO

Phase-change memory (PCM) is a promising candidate for data storage in flexible electronics, but its high switching current and power are often drawbacks. In this study, we demonstrate a switching current density of ~0.1 mega-ampere per square centimeter in flexible superlattice PCM, a value that is one to two orders of magnitude lower than in conventional PCM on flexible or silicon substrates. This reduced switching current density is enabled by heat confinement in the superlattice material, assisted by current confinement in a pore-type device and the thermally insulating flexible substrate. Our devices also show multilevel operation with low resistance drift. The low switching current and good resistance on/off ratio are retained before, during, and after repeated bending and cycling. These results pave the way to low-power memory for flexible electronics and also provide key insights for PCM optimization on conventional silicon substrates.

10.
Curr Drug Res Rev ; 13(3): 184-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34126913

RESUMO

Coronaviruses (CoVs) belong to the Betacoronavirus group, an unusually large RNA genome characterized by club-like spikes that project from their surface. An outbreak of a novel coronavirus 2019 (nCOVID-19) already showed a unique replication strategy and infection that has posed significant threat to international health and the economy around the globe. Scientists around the world are investigating few previously used clinical drugs for the treatment of COVID-19. This review provides synthesis and mode of action of recently investigated drugs like Chloroquine, Hydroxychloroquine, Ivermectin, Selamectin, Remdesivir, Baricitinib, Darunavir, Favipiravir, Lopinavir/ ritonavir and Mefloquine hydrochloride that constitute an option for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Humanos , Hidroxicloroquina , SARS-CoV-2
11.
Nano Lett ; 21(8): 3443-3450, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852295

RESUMO

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

12.
Sci Rep ; 8(1): 8863, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891992

RESUMO

Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (µm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.

13.
ACS Appl Mater Interfaces ; 9(48): 41863-41870, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29124928

RESUMO

In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 µm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiOx) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiOx), a well-known material for an electron-selective contact interlayer. Key parameters including Voc and Jsc also show different degrees of enhancement if single (NiOx only) or double (both NiOx and TiOx) carrier-selective contacts are integrated. The fabrication process for TiOx and NiOx layer integration is scalable and shows good compatibility with the device.

14.
Nanotechnology ; 28(44): 445201, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-28832335

RESUMO

The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ âˆ¼ 35) than the amorphous phase case (κ âˆ¼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.

15.
ACS Appl Mater Interfaces ; 9(20): 17201-17207, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28447776

RESUMO

Drastic reduction in nickel oxide (NiOx) film resistivity and ionization potential is observed when subjected to ultraviolet (UV)/ozone (O3) treatment. X-ray photoemission spectroscopy suggests that UV/O3 treatment changes the film stoichiometry by introducing Ni vacancy defects. Oxygen-rich NiOx having Ni vacancy defects behaves as a p-type semiconductor. Therefore, in this work, a simple and effective technique to introduce doping in NiOx is shown. Angle-resolved XPS reveals that the effect of UV/O3 treatment does not only alter the film surface property but also introduces oxygen-rich stoichiometry throughout the depth of the film. Finally, simple metal/interlayer/semiconductor (MIS) contacts are fabricated on p-type Si using NiOx as the interlayer and different metals. Significant barrier height reduction is observed with respect to the control sample following UV/O3 treatment, which is in agreement with the observed reduction in film resistivity. From an energy band diagram point of view, the introduction of the UV/O3 treatment changes the defect state distribution, resulting in a change in the pinning of the Fermi level. Therefore, this work also shows that the Fermi level pinning property of NiOx can be controlled using UV/O3 treatment.

16.
J Environ Sci Eng ; 51(4): 321-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21117426

RESUMO

Water distribution system (WDS) is the most important component of water supply chain--supplying water from source to consumer. When supply system is poorly maintained, contaminants enter into the supply pipes through cracks and this leads to significant public health risk. Being underground, pipe condition assessment is a difficult task. In this paper, a case study is presented for assessment of pipe condition in a water distribution network of Moinbagh area in Hyderabad (India). The mathematical model-Pipe Condition Assessment (PCA) Model was used, which utilizes GIS based maps of water distribution network, sewer network, drains and soil as input in addition to data on physical properties of the network as well as operational parameters. The application of PCA identified that only 3% pipes in the network were in bad condition.


Assuntos
Sistemas de Informação Geográfica , Abastecimento de Água , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...