Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 156(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055192

RESUMO

The transient receptor vanilloid 1 (TRPV1) is a non-selective ion channel, which is activated by several chemical ligands and heat. We have previously shown that activation of TRPV1 by different ligands results in single-channel openings with different conductance, suggesting that the selectivity filter is highly dynamic. TRPV1 is weakly voltage dependent; here, we sought to explore whether the permeation of different monovalent ions could influence the voltage dependence of this ion channel. By using single-channel recordings, we show that TRPV1 channels undergo rapid transitions to closed states that are directly connected to the open state, which may result from structural fluctuations of their selectivity filter. Moreover, we demonstrate that the rates of these transitions are influenced by the permeant ion, suggesting that ion permeation regulates the voltage dependence of these channels. Our data could be the basis for more detailed MD simulations exploring the permeation mechanism and how the occupancy of different ions alters the three-dimensional structure of the pore of TRPV1 channels.


Assuntos
Canais de Cátion TRPV , Cátions , Canais de Cátion TRPV/fisiologia
2.
Annu Rev Physiol ; 85: 293-316, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763971

RESUMO

The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.


Assuntos
Canais Iônicos , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
3.
J Physiol ; 601(9): 1655-1673, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36625071

RESUMO

The Transient Receptor Potential Vanilloid 4 (TRPV4) channel has been shown to function in many physiological and pathophysiological processes. Despite abundant information on its importance in physiology, very few endogenous agonists for this channel have been described, and very few underlying mechanisms for its activation have been clarified. TRPV4 is expressed by several types of cells, such as vascular endothelial, and skin and lung epithelial cells, where it plays pivotal roles in their function. In the present study, we show that TRPV4 is activated by lysophosphatidic acid (LPA) in both endogenous and heterologous expression systems, pinpointing this molecule as one of the few known endogenous agonists for TRPV4. Importantly, LPA is a bioactive glycerophospholipid, relevant in several physiological conditions, including inflammation and vascular function, where TRPV4 has also been found to be essential. Here we also provide mechanistic details of the activation of TRPV4 by LPA and another glycerophospholipid, lysophosphatidylcholine (LPC), and show that LPA directly interacts with both the N- and C-terminal regions of TRPV4 to activate this channel. Moreover, we show that LPC activates TRPV4 by producing an open state with a different single-channel conductance to that observed with LPA. Our data suggest that the activation of TRPV4 can be finely tuned in response to different endogenous lipids, highlighting this phenomenon as a regulator of cell and organismal physiology. KEY POINTS: The Transient Receptor Potential Vaniloid (TRPV) 4 ion channel is a widely distributed protein with important roles in normal and disease physiology for which few endogenous ligands are known. TRPV4 is activated by a bioactive lipid, lysophosphatidic acid (LPA) 18:1, in a dose-dependent manner, in both a primary and a heterologous expression system. Activation of TRPV4 by LPA18:1 requires residues in the N- and C-termini of the ion channel. Single-channel recordings show that TRPV4 is activated with a decreased current amplitude (conductance) in the presence of lysophosphatidylcholine (LPC) 18:1, while LPA18:1 and GSK101 activate the channel with a larger single-channel amplitude. Distinct single-channel amplitudes produced by LPA18:1 and LPC18:1 could differentially modulate the responses of the cells expressing TRPV4 under different physiological conditions.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Cátion TRPV/metabolismo , Lisofosfatidilcolinas/farmacologia , Lisofosfolipídeos/farmacologia
4.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695566

RESUMO

Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (ΔpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveal the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by ΔpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.


Assuntos
Ativação do Canal Iônico , Prótons , Humanos , Ativação do Canal Iônico/fisiologia , Aminoácidos
5.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549871

RESUMO

The transient receptor potential vanilloid 4 (TRPV4) ion channel is present in different tissues including those of the airways. This channel is activated in response to stimuli such as changes in temperature, hypoosmotic conditions, mechanical stress, and chemicals from plants, lipids, and others. TRPV4's overactivity and/or dysfunction has been associated with several diseases, such as skeletal dysplasias, neuromuscular disorders, and lung pathologies such as asthma and cardiogenic lung edema and COVID-19-related respiratory malfunction. TRPV4 antagonists and blockers have been described; nonetheless, the mechanisms involved in achieving inhibition of the channel remain scarce, and the search for safe use of these molecules in humans continues. Here, we show that the widely used bronchodilator salbutamol and other ligands of ß-adrenergic receptors inhibit TRPV4's activation. We also demonstrate that inhibition of TRPV4 by salbutamol is achieved through interaction with two residues located in the outer region of the pore and that salbutamol leads to channel closing, consistent with an allosteric mechanism. Our study provides molecular insights into the mechanisms that regulate the activity of this physiopathologically important ion channel.


Assuntos
COVID-19 , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cátion TRPV/química , Receptores Adrenérgicos beta , Ligantes , Albuterol/farmacologia
6.
Protein Expr Purif ; 201: 106172, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115641

RESUMO

Heterologous expression systems have been used as a powerful experimental strategy to study the function of many proteins, particularly ion transporters. For this experiment, it is fundamental to prepare an expression vector encoding a protein of interest. However, we encountered problems in vector preparation of the voltage sensor domain (VSD) of murine sperm-specific Na+/H+ exchanger (sNHE) due to its severe toxicity to bacteria. We overcame the problems by insertion of an amber stop codon or a synthetic intron into the coding sequence of the VSD in the expression vectors. Both methods allowed us to express the protein of interest in HEK293 cells (combined with a stop codon suppression system for amber codon). The VSD of mouse sNHE generates voltage-dependent outward ionic currents, which is a probable cause of toxicity to bacteria. We propose these two strategies as practical solutions to study the function of any protein toxic to bacteria.


Assuntos
Prótons , Sêmen , Animais , Bactérias/metabolismo , Códon de Terminação/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Sêmen/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Espermatozoides/metabolismo
7.
Nat Rev Neurosci ; 23(10): 596-610, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35831443

RESUMO

The perception of nociceptive signals, which are translated into pain, plays a fundamental role in the survival of organisms. Because pain is linked to a negative sensation, animals learn to avoid noxious signals. These signals are detected by receptors, which include some members of the transient receptor potential (TRP) family of ion channels that act as transducers of exogenous and endogenous noxious cues. These proteins have been in the focus of the field of physiology for several years, and much knowledge of how they regulate the function of the cell types and organs where they are expressed has been acquired. The last decade has been especially exciting because the 'resolution revolution' has allowed us to learn the molecular intimacies of TRP channels using cryogenic electron microscopy. These findings, in combination with functional studies, have provided insights into the role played by these channels in the generation and maintenance of pain.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Dor , Sensação/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
9.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355697

RESUMO

Voltage-dependent proton-permeable channels are membrane proteins mediating a number of important physiological functions. Here we report the presence of a gene encoding Hv1 voltage-dependent, proton-permeable channels in two species of reef-building corals. We performed a characterization of their biophysical properties and found that these channels are fast-activating and modulated by the pH gradient in a distinct manner. The biophysical properties of these novel channels make them interesting model systems. We have also developed an allosteric gating model that provides mechanistic insight into the modulation of voltage-dependence by protons. This work also represents the first functional characterization of any ion channel in scleractinian corals. We discuss the implications of the presence of these channels in the membranes of coral cells in the calcification and pH-regulation processes and possible consequences of ocean acidification related to the function of these channels.


Assuntos
Antozoários/metabolismo , Canais Iônicos/metabolismo , Prótons , Animais , Recifes de Corais , Concentração de Íons de Hidrogênio , Canais Iônicos/genética , Água do Mar/química
10.
Heliyon ; 6(10): e05140, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33083608

RESUMO

The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.

11.
J Gen Physiol ; 152(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32110806

RESUMO

Slow inactivation has been described in multiple voltage-gated K+ channels and in great detail in the Drosophila Shaker channel. Structural studies have begun to facilitate a better understanding of the atomic details of this and other gating mechanisms. To date, the only voltage-gated potassium channels whose structure has been solved are KvAP (x-ray diffraction), the KV1.2-KV2.1 "paddle" chimera (x-ray diffraction and cryo-EM), KV1.2 (x-ray diffraction), and ether-à-go-go (cryo-EM); however, the structural details and mechanisms of slow inactivation in these channels are unknown or poorly characterized. Here, we present a detailed study of slow inactivation in the rat KV1.2 channel and show that it has some properties consistent with the C-type inactivation described in Shaker. We also study the effects of some mutations that are known to modulate C-type inactivation in Shaker and show that qualitative and quantitative differences exist in their functional effects, possibly underscoring subtle but important structural differences between the C-inactivated states in Shaker and KV1.2.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.2 , Animais , Canal de Potássio Kv1.2/metabolismo , Ratos , Xenopus laevis/metabolismo
12.
Elife ; 92020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32093826

RESUMO

A native calcium ion channel has been identified in bacteria for the first time.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/genética
13.
Biophys J ; 118(4): 836-845, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31757360

RESUMO

The TRPV1 cation nonselective ion channel plays an essential role in thermosensation and perception of other noxious stimuli. TRPV1 can be activated by low extracellular pH, high temperature, or naturally occurring pungent molecules such as allicin, capsaicin, or resiniferatoxin. Its noxious thermal sensitivity makes it an important participant as a thermal sensor in mammals. However, details of the mechanism of channel activation by increases in temperature remain unclear. Here, we used a combination of approaches to try to understand the role of the ankyrin repeat domain (ARD) in channel behavior. First, a computational modeling approach by coarse-grained molecular dynamics simulation of the whole TRPV1 embedded in a phosphatidylcholine and phosphatidylethanolamine membrane provides insight into the dynamics of this channel domain. Global analysis of the structural ensemble shows that the ARD is a region that sustains high fluctuations during dynamics at different temperatures. We then performed biochemical and thermal stability studies of the purified ARD by the means of circular dichroism and tryptophan fluorescence and demonstrate that this region undergoes structural changes at similar temperatures that lead to TRPV1 activation. Our data suggest that the ARD is a dynamic module and that it may participate in controlling the temperature sensitivity of TRPV1.


Assuntos
Repetição de Anquirina , Canais de Cátion TRPV , Animais , Capsaicina , Temperatura Alta , Humanos , Simulação de Dinâmica Molecular , Canais de Cátion TRPV/metabolismo
14.
Temperature (Austin) ; 6(2): 132-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286024

RESUMO

The superfamily of Transient Receptor Potential (TRP) channels is composed by a group of calcium-permeable ionic channels with a generally shared topology. The thermoTRP channels are a subgroup of 11 members, found in the TRPA, TRPV, TRPC, and TRPM subfamilies. Historically, members of this subgroup have been classified as cold, warm or hot-specific temperature sensors. Recently, new experimental results have shown that the role that has been given to the thermoTRPs in thermosensation is not necessarily strict. In addition, it has been shown that these channels activate over temperature ranges, which can have variations depending on the species and the interaction with a specific biological context. Investigation of these interactions could help to elucidate the mechanisms of activation by temperature, which remains uncertain. Abbreviations: Cryo-EM: Cryogenic electron microscopy; DRG: Dorsal root ganglia; H: Human; ROS: Reactive Oxygen Species; TG: Trigeminal ganglia; TRP: Transient Receptor Potential; TRPA: TRP ankyrin; TRPV: TRP vanilloid; TRPC: TRP canonical; TRPM: TRP melastatin.

15.
FEBS J ; 286(23): 4797-4818, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31298811

RESUMO

GPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells. Transiently expressed EYFP-Gpn1 and Gpn3-CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293-AD cells. Molecular modeling of the human Gpn1-Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α-helix 7, insertion 2, and the GPN-loop from each protein. In site-directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP-Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3-CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293-AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1-Gpn3 interaction is required to display the dominant-negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1-Gpn3 strong interaction is critical for their cellular function.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Citoplasma/enzimologia , GTP Fosfo-Hidrolases/genética , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Channels (Austin) ; 13(1): 207-226, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184289

RESUMO

Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.


Assuntos
Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Família Multigênica , Conformação Proteica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética
17.
J Gen Physiol ; 150(12): 1735-1746, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30409787

RESUMO

The TRPV1 ion channel is a membrane protein that is expressed in primary afferent nociceptors, where it is activated by a diverse array of stimuli. Our prior work has shown that this channel is activated by lysophosphatidic acid (LPA), an unsaturated lysophospholipid that is produced endogenously and released under certain pathophysiological conditions, resulting in the sensation of pain. Macroscopic currents activated by saturating concentrations of LPA applied to excised membrane patches are larger in magnitude than those activated by saturating concentrations of capsaicin, which causes near-maximal TRPV1 open probability. Here we show that activation of TRPV1 by LPA is associated with a higher single-channel conductance than activation by capsaicin. We also observe that the effects of LPA on TRPV1 are not caused by an increase in the surface charge nor are they mimicked by a structurally similar lipid, ruling out the contribution of change in membrane properties. Finally, we demonstrate that the effects of LPA on the unitary conductance of TRPV1 depend upon the presence of a positively charged residue in the C terminus of the channel, suggesting that LPA induces a distinct conformational change.


Assuntos
Lisofosfolipídeos/farmacologia , Canais de Cátion TRPV/agonistas , Capsaicina/farmacologia , Células HEK293 , Humanos , Técnicas de Patch-Clamp
18.
J Neurophysiol ; 120(3): 1198-1211, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947596

RESUMO

Lysophosphatidic acid (LPA) is a bioactive phospholipid that exhibits a wide array of functions that include regulation of protein synthesis and adequate development of organisms. LPA is present in the membranes of cells and in the serum of several mammals and has also been shown to participate importantly in pathophysiological conditions. For several decades it was known that LPA produces some of its effects in cells through its interaction with specific G protein-coupled receptors, which in turn are responsible for signaling pathways that regulate cellular function. Among the target proteins for LPA receptors are ion channels that modulate diverse aspects of the physiology of cells and organs where they are expressed. However, recent studies have begun to unveil direct effects of LPA on ion channels, highlighting this phospholipid as a direct agonist and adding to the knowledge of the field of lipid-protein interactions. Moreover, the roles of LPA in pathophysiological conditions associated with the function of some ion channels have also begun to be clarified, and molecular mechanisms have been identified. This review focuses on the effects of LPA on ion channel function under normal and pathological conditions and highlights our present knowledge of the mechanisms by which it regulates the function and expression of N- and T-type Ca++ channels; M-type K+ channel and inward rectifier K+ channel subunit 2.1; transient receptor potential (TRP) melastatin 2, TRP vanilloid 1, and TRP ankyrin 1 channels; and TWIK-related K+ channel 1 (TREK-1), TREK-2, TWIK-related spinal cord K+ channel (TRESK), and TWIK-related arachidonic acid-stimulated K+ channel (TRAAK).


Assuntos
Canais Iônicos/metabolismo , Lisofosfolipídeos/metabolismo , Dor/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Convulsões/metabolismo , Animais , Humanos , Lisofosfolipídeos/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
19.
Elife ; 72018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869983

RESUMO

Temperature-activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening.


Assuntos
Ativação do Canal Iônico , Potenciais da Membrana , Canais de Cátion TRPV/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...