Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1714, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242994

RESUMO

The fate of cadmium at the Muharram Aisha wastewater treatment plant in Karbala governorate, Iraq was studied using the TOXCHEM model. Cadmium, a known carcinogen, and is considered one of the most dangerous heavy metals and high concentrations, greater than permissible limits, were found in the treated wastewater. The plant operates using an activated sludge system and this was modeled via TOXCHEM with a sensitivity analysis carried out on the extended aeration system. Prior to analysis, the model was calibrated and validated for cadmium, with the adjustments leading to a mean square error (RMSE) and correlation coefficient (R) of 0.0001 and 0.81, respectively. The mass balance of cadmium in the Muharram Aisha treatment plant was found to be 4832.44 g/day (37.1726%) in the treated wastewater and 8164.52 g/day (62.804%) in the sludge, which indicated that the mix liquor suspended solid (MLSS) was the most sensitive factor. The sensitivity to cadmium was analyzed via MLSS in the extended aeration system and the results o indicated that the higher the MLSS concentration (mg/L), the greater the removal of cadmium in the treated wastewater. It was found that increasing the MLSS through a biological treatment method reduced the concentration of cadmium without the need for additional of any (potentially harmful) chemical treatments. The plant was subsequently operated for a period of 5 months with the MLSS increased from 1500 to 4500 mg/L, and this reduced the concentration of cadmium in the wastewater from 0.36 to 0.01 mg/L as a consequence. This research demonstrates how the novel application of TOXCHEM can be a useful tool in the reduction of heavy metal contamination in the environment.


Assuntos
Metais Pesados , Purificação da Água , Águas Residuárias , Esgotos , Cádmio , Purificação da Água/métodos , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
2.
ACS Omega ; 7(38): 34326-34340, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188283

RESUMO

Polypyrrole (Ppy)-modified graphene oxide (GO) electrodes were synthesized for the first time in a choline chloride-phenol-based deep eutectic solvent at various temperatures via electrochemical methods without the addition of any inorganic or organic catalysts. The surface morphologies and structures of the modified films were assessed via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The electrochemical properties and stability of the modified electrodes were investigated via cyclic voltammetry and impedance spectroscopy at various temperatures and scan rates. The results showed that the specific capacitance of the nanocomposites decreased with increasing scan rate during cycling. Additionally, the specific capacitances of the pure Ppy and Ppy/GO films increased with increasing temperature of the electrolyte (monomer-free), attributed to the reduction in viscosity at elevated temperature. The specific capacitances at 5 mV s-1 were found to be 1071.78 and 594.79 F g-1 for Ppy/GO (20 wt %) at 50 and 25 °C, respectively. It was also observed that the resistance in the cell decreased with increasing electrolyte temperature. Ppy/GO at 50 mV s-1 was found to have the highest capacitance retention of 85% after 2000 cycles, showing better cycling stability than the pure Ppy film. Herein, the incorporation of GO in the Ppy matrix led to improved specific capacitance and cyclic stability, suggesting that Ppy/GO could represent a promising electrode material for supercapacitor applications.

3.
ACS Omega ; 7(23): 20405-20419, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722009

RESUMO

A novel electrochemical sensor for determining trace levels of Hg2+, Pb2+, and Zn2+ ions in water using square wave voltammetry (SWV) is reported. The sensor is based on a platinum electrode (Pt) modified by poly(3,4-ethylenedioxythiophene) and N α,N α-bis-(carboxymethyl)-l-lysine hydrate (NTA lysine) PEDOT/NTA. The modified electrode surface (PEDOT/NTA) was prepared via the introduction of the lysine-NTA group to a PEDOT/N-hydroxyphthalimide NHP electrode. The (PEDOT/NTA) was characterized via cyclic voltammetry (CV), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The effects of scan rates on the electrochemical properties of the polymer electrode were also investigated. The electrochemical results were used to estimate the coverage of the electrode polymer surface and its electrostability in background electrolyte solutions. Several analytical parameters, such as polymer film thickness, metal deposition time, and pH of the electrolyte, were examined. Linear responses to Hg2+, Pb2+, and Zn2+ ions in the concentration range of 5-100 µg L-1 were obtained. The limits of detection (LODs) for the determination of Hg2+, Pb2+, and Zn2+ ions were 1.73, 2.33, and 1.99 µg L-1, respectively. These promising results revealed that modified PEDOT/NTA films might well represent an important addition to existing electrochemical sensor technologies.

4.
Faraday Discuss ; 199: 75-99, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28540379

RESUMO

Electroactive films based on conducting polymers have numerous potential applications, but practical devices frequently require a combination of properties not met by a single component. This has prompted an extension to composite materials, notably those in which particulates are immobilised within a polymer film. Irrespective of the polymer and the intended application, film wetting is important: by various means, it facilitates transport processes - of electronic charge, charge-balancing counter ions ("dopant") and analyte/reactant molecules - and motion of polymer segments. While film solvent content and transfer have been widely studied for pristine polymer films exposed to molecular solvents, extension to non-conventional solvents (such as ionic liquids) or to composite films has been given much less attention. Here we consider such cases based on polyaniline films. We explore two factors, the nature of the electrolyte (solvent and film-permeating ions) and the effect of introducing particulate species into the film. In the first instance, we compare film behaviours when exposed to a conventional protic solvent (water) with an aprotic ionic liquid (Ethaline) and the intermediate case of a protic ionic liquid (Oxaline). Secondly, we explore the effect of inclusion of physically diverse particulates: multi-walled carbon nanotubes, graphite or molybdenum dioxide. We use electrochemistry to control and monitor the film redox state and change therein, and acoustic wave measurements to diagnose rheologically vs. gravimetrically determined response. The outcomes provide insights of relevance to future practical applications, including charge/discharge rates and cycle life for energy storage devices, "salt" transfer in water purification technologies, and the extent of film "memory" of previous environments when sequentially exposed to different media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA