Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Environ Res ; 252(Pt 2): 118928, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636646

RESUMO

Microplastics (MPs), as emerging indoor contaminants, have garnered attention due to their ubiquity and unresolved implications for human health. These tiny particles have permeated indoor air and water, leading to inevitable human exposure. Preliminary evidence suggests MP exposure could be linked to respiratory, gastrointestinal, and potentially other health issues, yet the full scope of their effects remains unclear. To map the overall landscape of this research field, a bibliometric analysis based on research articles retrieved from the Web of Science database was conducted. The study synthesizes the current state of knowledge and spotlights the innovative mitigation strategies proposed to curb indoor MP pollution. These strategies involve minimizing the MP emission from source, advancements in filtration technology, aimed at reducing the MP exposure. Furthermore, this research sheds light on cutting-edge methods for converting MP waste into value-added products. These innovative approaches not only promise to alleviate environmental burdens but also contribute to a more sustainable and circular economy by transforming waste into resources such as biofuels, construction materials, and batteries. Despite these strides, this study acknowledges the ongoing challenges, including the need for more efficient removal technologies and a deeper understanding of MPs' health impacts. Looking forward, the study underscores the necessity for further research to fill these knowledge gaps, particularly in the areas of long-term health outcomes and the development of standardized, reliable methodologies for MP detection and quantification in indoor settings. This comprehensive approach paves the way for future exploration and the development of robust solutions to the complex issue of microplastic pollution.


Assuntos
Poluição do Ar em Ambientes Fechados , Bibliometria , Microplásticos , Microplásticos/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Humanos , Monitoramento Ambiental/métodos
2.
J Clin Med ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610648

RESUMO

Background: Mometasone furoate nasal spray is efficacious in relieving allergic rhinitis symptoms. The objectives of this study were, firstly, to compare the efficacy of Elonide to Nasonex® and a placebo and secondly, to investigate the side effects of Elonide. Method: This was a prospective, single-centered, double blinded, randomized, placebo-controlled, non-inferiority trial. A total of 163 participants from the Otorhinolaryngology Clinic, Hospital Canselor Tuanku Muhriz (HCTM), were randomized into three treatment groups receiving Elonide (n = 56), Nasonex® (n = 54), and placebo (n = 53) nasal sprays using an online randomizer (Random.org). Treatment was administered for 4 weeks. The primary outcome measure was the Total Nasal Resistance (TNR), and the secondary outcomes were the Visual Analogue Score (VAS) and the Rhinoconjunctivitis Quality of Life Questionnaire (RQOLQ) score. Side effects were recorded. Results: There were significant improvements for all groups from baseline. The Elonide group had the greatest mean difference for all primary and secondary outcomes compared to Nasonex® and the placebo (0.77 ± 2.44 vs. 0.35 ± 1.16, p = 1.00 vs. 0.17 ± 0.82, p = 0.01). Elonide is non-inferior to Nasonex (p = 1.00) and superior to the placebo (p < 0.05). The highest side effects reported were for Nasonex (n = 14, 26%), followed by the placebo (n = 8, 16%) and Elonide (n = 6, 12%); headaches (n = 9, 17%) and sore throat (n = 9, 17%) were the most common. Conclusions: Elonide has similar efficacy to Nasonex® when compared to a placebo in the treatment of AR in adults. Elonide is safe and tolerable, with fewer side effects and no adverse side effects.

3.
Chemosphere ; 349: 140881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048826

RESUMO

Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.


Assuntos
Micorrizas , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Qualidade de Vida , Petróleo/metabolismo , Solo , Plantas/metabolismo , Micorrizas/metabolismo , Hidrocarbonetos/metabolismo , Microbiologia do Solo
4.
Helicobacter ; 28(6): e13017, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614081

RESUMO

BACKGROUND: Despite multiple therapy regimens, the decline in the Helicobacter pylori eradication rate poses a significant challenge to the medical community. Adding Lactobacillus reuteri probiotic as an adjunct treatment has shown some promising results. This study aims to investigate the efficacy of Lactobacillus reuteri DSM 17648 in H. pylori eradication and its effect in ameliorating gastrointestinal symptoms and adverse treatment effects. MATERIALS AND METHODS: This randomized, double-blinded, placebo-controlled trial involved treatment-naïve H. pylori-positive patients. Ninety patients received standard triple therapy for 2 weeks before receiving either a probiotic or placebo for 4 weeks. The posttreatment eradication rate was assessed via a 14 C urea breath test in Week 8. The Gastrointestinal Symptom Rating Scale (GSRS) questionnaire and an interview on treatment adverse effects were conducted during this study. RESULTS: The eradication rate was higher in the probiotic group than in the placebo group, with a 22.2% difference in the intention-to-treat analysis (91.1% vs. 68.9%; p = 0.007) and 24.3% difference in the per-protocol analysis (93.2% vs. 68.9%; p = 0.007). The probiotic group showed significant pre- to post-treatment reductions in indigestion, constipation, abdominal pain, and total GSRS scores. The probiotic group showed significantly greater reductions in GSRS scores than the placebo group: indigestion (4.34 ± 5.00 vs. 1.78 ± 5.64; p = 0.026), abdominal pain (2.64 ± 2.88 vs. 0.89 ± 3.11; p = 0.007), constipation (2.34 ± 3.91 vs. 0.64 ± 2.92; p = 0.023), and total score (12.41 ± 12.19 vs. 4.24 ± 13.72; p = 0.004). The probiotic group reported significantly fewer adverse headache (0% vs. 15.6%; p = 0.012) and abdominal pain (0% vs. 13.3%; p = 0.026) effects. CONCLUSIONS: There was a significant increase in H. pylori eradication rate and attenuation of symptoms and adverse treatment effects when L. reuteri was given as an adjunct treatment.


Assuntos
Dispepsia , Gastroenteropatias , Infecções por Helicobacter , Helicobacter pylori , Limosilactobacillus reuteri , Probióticos , Humanos , Infecções por Helicobacter/tratamento farmacológico , Antibacterianos , Dispepsia/tratamento farmacológico , Quimioterapia Combinada , Dor Abdominal/induzido quimicamente , Dor Abdominal/tratamento farmacológico , Constipação Intestinal/tratamento farmacológico , Resultado do Tratamento
5.
Front Microbiol ; 14: 1194292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577438

RESUMO

This study presents a green synthesis approach for the fabrication of zinc oxide-silver nanoparticles (ZnO-Ag-NPs) using Punica granatum fruit peels extract as a natural reducing and stabilizing agent. This eco-friendly method offers a sustainable alternative to conventional methods that often employ toxic or hazardous chemicals. Antibacterial and anti-cancer activities of the green synthesized nanoparticles were then assessed in vitro. X-ray diffraction confirmed the production of ZnO-Ag-NPs with increasing crystallinity in higher pH values. The ZnO-Ag-NPs were found to be agglomerated with spherical Ag-NPs. Fourier Transform Infrared (FTIR) spectra revealed a broad band in ZnO-Ag-NPs ranging from 400-1 to 530 cm-1 with reduced intensity as compared to ZnO-NPs, indicating the formation of Ag-NPs on the surface of ZnO-NPs. The synthesized ZnO-Ag-NPs exhibited potent antibacterial activity against a broad spectrum of bacterial strains, particularly Gram-positive bacteria, with superior inhibition activity compared to ZnO-NPs. Moreover, ZnO-Ag-NPs showed a dose-dependent anti-proliferative effect on colorectal-, lung-, and cervical cancer cells. ZnO-Ag-NPs showed significantly greater efficacy in inhibiting cancer cell growth at a lower concentration of 31.25 µg/mL, compared to ZnO-NPs which required over 500 µg/mL, possibly due to the presence of silver nanoparticles (Ag-NPs). The results obtained from this study demonstrate the potential of green synthesis approaches in the fabrication of therapeutic nanomaterials for cancer treatment, as well as other biomedical applications.

6.
Heliyon ; 9(6): e17284, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389087

RESUMO

The batik industry has been one of the main family businesses in most of the east-coast region of the Malaysian peninsula for many years. However, appropriate water treatment is still a major challenge for this industry. Stringent laws introduced by the Malaysian authorities and the intention to protect the environment are factors that drive researchers to search for suitable, appropriate, affordable and efficient treatment of batik wastewater. Treatment research on batik wastewater is still lacking and coagulation-flocculation treatment using alum was introduced and chosen as a stepping stone toward the selection of green coagulants. This study aimed to determine the best conditions for alum flocculation-coagulation using a standard jar test method. Four main factors were investigated: alum dosage (0.1-3.5 g/L), pH (4-11), settling time (0.5-24 h) and rapid mixing rate (100-300 rpm). Results obtained were further analysed statistically using SPSS software prior to determining the significant effect of variable changes. From this study, the best conditions for batik wastewater treatment using the flocculation-coagulation process were found to be at alum dosage of 1.5 g/L, pH 8, 4 h settling time and a rapid mixing rate of 100 rpm. Chemical oxygen demand (COD), turbidity, colour and total suspended solids (TSS) were removed by 70.7, 92.2, 88.4 and 100%, respectively, under these conditions. This study showed that batik wastewater can be treated by the coagulation-flocculation process using chemical means of alum. This indicates the need for forthcoming developments in natural-based-coagulant-flocculants toward the sustainability of the batik industry.

7.
Medeni Med J ; 38(2): 128-139, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338914

RESUMO

Objective: The Nijmegen Cochlear Implant questionnaire (NCIQ) was used to gauge the quality of life (QOL) improvement among cochlear implant (CI) users who suffered from post-lingual deafness. This study aimed to determine the consistency and reliability of the Malay version of the Nijmegen Cochlear Implant questionnaire (NCIQ-M) and to report the QOL of patients using NCIQ-M. Methods: This study has two phases: Phase I involves the translation of the NCIQ from English to Malay, followed by internal consistency and test-retest reliability assessment of the final version of NCIQ-M. Phase II involves QOL assessment of post-lingual deafness using NCIQ-M. Results: Twenty CI users and 20 non-CI users answered the NCIQ-M. Test-retest reliability analysis of the NCIQ-M was performed using an intraclass correlation coefficient, achieving scores of more than 0.85. Internal consistency was analysed with Cronbach α of more than 0.70 in all subdomains. Scores between the two groups of subjects were analyzed using an independent sample t-test. Good internal consistency, intraclass correlation, and test-retest reliability were obtained. Scores in all six subdomains of the NCIQ-M are significantly higher in the CI user group than in the non-CI user group. Conclusions: The NCIQ-M is a consistent and reliable subjective questionnaire to determine the QOL of CI users concerning physical, psychological, and social functioning.

8.
Front Endocrinol (Lausanne) ; 14: 1031066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923220

RESUMO

Introduction: Vulvovaginal atrophy (VVA) is a common condition in post-menopausal women. Symptoms of VVA include dyspareunia, vaginal dryness, vaginal and/or vulvar itching, burning and soreness, dysuria and vaginal bleeding accompanying sexual activity. These symptoms are physiological responses to hypoestrogenicity, inducing atrophy of the vagina epithelia and sudden reduction in mucous production. Prevailing therapy for VVA is hormone replacement therapy (HRT), notably estrogen, progesterone or a combination of the two. However, using HRT is associated with an increased incidence of breast and endometrial cancer, venous thromboembolism in the lungs and legs, stroke and cardiovascular complications. Methods: This study evaluated Malaysian Gelam honey as a nutraceutical alternative to estrogen HRT (ERT) in alleviating VVA. A total of 24 female 8-weekold Sprague Dawley rats underwent bilateral oophorectomy. A minimum of 14 days elapsed from the time of surgery and administration of the first dose of Gelam honey to allow the female hormones to subside to a stable baseline and complete recovery from surgery. Vaginal tissues were harvested following a 2-week administration of Gelam honey, the harvested vagina tissue underwent immunohistochemistry (IHC) analysis for protein localization and qPCR for mRNA expression analysis. Results: Results indicated that Gelam honey administration had increased the localization of Aqp1, Aqp5, CFTR and Muc1 proteins in vaginal tissue compared to the menopause group. The effect of Gelam honey on the protein expressions is summarized as Aqp1>CFTR>Aqp5>Muc1. Discussion: Gene expression analysis reveals Gelam honey had no effect on Aqp1 and CFTR genes. Gelam honey had up-regulated Aqp5 gene expression. However, its expression was lower than in the ERT+Ovx group. Additionally, Gelam honey up-regulated Muc1 in the vagina, with an expression level higher than those observed either in the ERT+Ovx or SC groups. Gelam honey exhibits a weak estrogenic effect on the genes and proteins responsible for regulating water in the vaginal tissue (Aqp1, Aqp5 and CFTR). In contrast, Gelam honey exhibits a strong estrogenic ability in influencing gene and protein expression for the sialic acid Muc1. Muc1 is associated with mucous production at the vaginal epithelial layer. In conclusion, the protein and gene expression changes in the vagina by Gelam honey had reduced the occurrence of vaginal atrophy in surgically-induced menopause models.


Assuntos
Mel , Doenças Vaginais , Humanos , Feminino , Ratos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística , Pós-Menopausa , Vulva/patologia , Ratos Sprague-Dawley , Doenças Vaginais/tratamento farmacológico , Doenças Vaginais/patologia , Estrogênios/uso terapêutico , Atrofia
9.
J Biomol Struct Dyn ; 41(13): 6027-6039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35862639

RESUMO

Burkholderia Lethal Factor 1 (BLF1) is a deamidase first characterized in Burkholderia pseudomallei. This enzyme inhibits cellular protein synthesis by deamidating a glutamine residue to a glutamic acid in its target protein, the eukaryotic translation initiation factor 4 A (eIF4A). In this work, we present the characterization of a hypothetical protein from Xanthomonas sp. Leaf131 as the first report of a BLF1 family ortholog outside of the Burkholderia genus. Although standard sequence similarity searches such as BLAST were not able to detect the homology between the Xanthomonas sp. Leaf131 hypothetical protein sequence and BLF1, our computed structure model for the Xanthomonas sp. hypothetical protein revealed structural similarities with an RMSD of 2.7 Å/164 Cα atoms and a TM-score of 0.72 when superposed. Structural comparisons of the Xanthomonas model structure against BLF1 and Escherichia coli cytotoxic necrotizing factor 1 (CNF1) revealed that the conserved signature LXGC motif and putative catalytic residues are structurally aligned thus signifying a level of functional or mechanistic similarity. Protein-protein docking analysis and molecular dynamics simulations also demonstrated that eIF4A could still be a possible target substrate for deamidation by XLF1 as it is for BLF1. We therefore propose that this Xanthomonas hypothetical protein be renamed as Xanthomonas Lethal Factor 1 (XLF1). Our work also provides further evidence of the utility of programs such as AlphaFold in bridging the computational function annotation transfer gap despite very low sequence identities of under 20%.Communicated by Ramaswamy H. Sarma.


Assuntos
Burkholderia pseudomallei , Burkholderia , Xanthomonas , Burkholderia pseudomallei/química , Sequência de Aminoácidos
10.
Int J Stem Cells ; 16(2): 123-134, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581369

RESUMO

Objective: The heart contains a pool of c-kit+ progenitor cells which is believed to be able to regenerate. The differentiation of these progenitor cells is reliant on different physiological cues. Unraveling the underlying signals to direct differentiation of progenitor cells will be beneficial in controlling progenitor cell fate. In this regard, the role of the mitochondria in mediating cardiac progenitor cell fate remains unclear. Specifically, the association between changes in mitochondrial morphology with the differentiation status of c-kit+ CPCs remains elusive. In this study, we investigated the relationship between mitochondrial morphology and the differentiation status of c-kit+ progenitor cells. Methods and Results: c-kit+ CPCs were isolated from 2-month-old male wild-type FVB mice. To activate differentiation, CPCs were incubated in α-minimal essential medium containing 10 nM dexamethasone for up to 7 days. To inhibit Drp1-mediated mitochondrial fragmentation, either 10 µM or 50 µM mdivi-1 was administered once at Day 0 and again at Day 2 of differentiation. To inhibit calcineurin, either 1 µM or 5 µM ciclosporin-A (CsA) was administered once at Day 0 and again at Day 2 of differentiation. Dexamethasone-induced differentiation of c-kit+ progenitor cells is aligned with fragmentation of the mitochondria via a calcineurin-Drp1 pathway. Pharmacologically inhibiting mitochondrial fragmentation retains the undifferentiated state of the c-kit+ progenitor cells. Conclusions: The findings from this study provide an alternative view of the role of mitochondrial fusion-fission in the differentiation of cardiac progenitor cells and the potential of pharmacologically manipulating the mitochondria to direct progenitor cell fate.

11.
Antioxid Redox Signal ; 38(7-9): 599-618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36053670

RESUMO

Significance: Although corona virus disease 2019 (COVID-19) has now gradually been categorized as an endemic, the long-term effect of COVID-19 in causing multiorgan disorders, including a perturbed cardiovascular system, is beginning to gain attention. Nonetheless, the underlying mechanism triggering post-COVID-19 cardiovascular dysfunction remains enigmatic. Are cardiac mitochondria the key to mediating cardiac dysfunction post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection? Recent Advances: Cardiovascular complications post-SARS-CoV-2 infection include myocarditis, myocardial injury, microvascular injury, pericarditis, acute coronary syndrome, and arrhythmias (fast or slow). Different types of myocardial damage or reduced heart function can occur after a lung infection or lung injury. Myocardial/coronary injury or decreased cardiac function is directly associated with increased mortality after hospital discharge in patients with COVID-19. The incidence of adverse cardiovascular events increases even in recovered COVID-19 patients. Disrupted cardiac mitochondria postinfection have been postulated to lead to cardiovascular dysfunction in the COVID-19 patients. Further studies are crucial to unravel the association between SARS-CoV-2 infection, mitochondrial dysfunction, and ensuing cardiovascular disorders (CVD). Critical Issues: The relationship between COVID-19 and myocardial injury or cardiovascular dysfunction has not been elucidated. In particular, the role of the cardiac mitochondria in this association remains to be determined. Future Directions: Elucidating the cause of cardiac mitochondrial dysfunction post-SARS-CoV-2 infection may allow a deeper understanding of long COVID-19 and resulting CVD, thus providing a potential therapeutic target. Antioxid. Redox Signal. 38, 599-618.


Assuntos
COVID-19 , Doenças Cardiovasculares , Cardiopatias , Miocardite , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Doenças Cardiovasculares/etiologia , Miocardite/complicações , Miocardite/terapia , Mitocôndrias
12.
Toxics ; 12(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38250968

RESUMO

Urban industrialization has caused a ubiquity of microplastics in the environment. A large percentage of plastic waste originated from Southeast Asian countries. Microplastics arising from the primary sources of personal care items and industrial uses and the fragmentation of larger plastics have recently garnered attention due to their ubiquity. Due to the rising level of plastic waste in the environment, the bioaccumulation and biomagnification of plastics threaten aquatic and human life. Wastewater treatment plant (WWTP) effluents are one of the major sources of these plastic fragments. WWTPs in Southeast Asia contribute largely to microplastic pollution in the marine environment, and thus, further technological improvements are required to ensure the complete and efficient removal of microplastics. Coagulation is a significant process in removing microplastics, and natural coagulants are far superior to their chemical equivalents due to their non-toxicity and cost-effectiveness. A focused literature search was conducted on journal repository platforms, mainly ScienceDirect and Elsevier, and on scientific databases such as Google Scholar using the keywords Wastewater Treatment Plant, Coagulation, Microplastics, Marine Environment and Southeast Asia. The contents and results of numerous papers and research articles were reviewed, and the relevant papers were selected. The relevant findings and research data are summarized in this paper. The paper reviews (1) natural coagulants for microplastic removal and their effectiveness in removing microplastics and (2) the potential use of natural coagulants in Southeast Asian wastewater treatment plants as the abundance of natural materials readily available in the region makes it a feasible option for microplastic removal.

13.
Sci Rep ; 12(1): 21049, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473917

RESUMO

Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.


Assuntos
Conservadores da Densidade Óssea , Traumatismos Craniocerebrais , Camundongos , Animais , Eletrofisiologia Cardíaca , Isquemia
14.
Heliyon ; 8(11): e11456, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36406685

RESUMO

Phytoremediation is an eco-friendly biotechnology with low costs. The removal of copper (Cu) from polluted water by the two floating plant species Azolla filiculoides and Lemna minor was observed and recorded. Plants were exposed to different Cu (II) concentration (0.25-1.00 mg/L) and sampling time (Days 0, 1, 2, 5 and 7). Both plants can remove Cu at 1.00 mg Cu/L water, with the highest removal rates of 100% for A. filiculoides and 74% for L. minor on the fifth day of exposure. At the end of the exposure period (Day 7), the growth of A. filiculoides exposed to 1.00 mg Cu/L was inhibited by Cu, but the structure of the inner cells of A. filiculoides was well organized as compared to the initial treatment period. Regarding L. minor, Cu at 1.00 mg/L negatively impacted both the growth and morphology (shrinking of its inner structure) of this plant. This is due to the higher accumulation of Cu in L. minor (2.86 mg/g) than in A. filiculoides (1.49 mg/g). Additionally, the rate of Cu removal per dry mass of plant fitted a pseudo-second order model for both plants, whereas the adsorption equilibrium data fitted the Freundlich isotherm, indicating that Cu adsorption occurs in multiple layers. Based on the results, both species can be applied in the phytoremediation of Cu-polluted water.

15.
Front Mol Biosci ; 9: 995853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250022

RESUMO

The combination of graphene-based materials and inorganic nanoparticles for the enhancement of the nanomaterial properties is extensively explored nowadays. In the present work, we used a sonochemical method to synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using Australian honey and vitamin C as capping and reducing agents, respectively. The honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both types of bacteria strains. However, in this study, the nanocomposite exhibited good bactericidal activity toward the Gram-positive bacteria than the Gram-negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell line HCT11, even in low concentrations. These results suggested that the H/Cu/RGO nanocomposite can be a suitable component for biomedical applications.

16.
Biomed Res Int ; 2022: 6889278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203484

RESUMO

Background: Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network. Methods: IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated. Results: IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost. Conclusion: IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.


Assuntos
Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Ratos
17.
Bioinorg Chem Appl ; 2022: 3158404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072280

RESUMO

Wound healing dressing based on a natural polymer of gellan gum incorporating zinc oxide nanoparticles and multiwall carbon nanotubes (GG/ZnONP + MWCNT) bionanocomposite film was fabricated via the solution casting method. The physicochemical properties of the film were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). Moreover, the antibacterial properties of the bionanocomposite film were investigated for wound healing applications. The characterization results confirmed the reinforcement of the gellan gum (GG) matrix with zinc oxide nanoparticles (ZnONP) and multiwall carbon nanotubes (MWCNT), as an amorphous GG/ZnONP + MWCNT bionanocomposite film was obtained. SEM morphological analysis shows that the addition of ZnONP and MWCNT nanofillers changed the film microstructure into a sponge-like structure that is more suitable for fluid uptake and thus more useful for wound healing. The GG/ZnONP + MWCNT bionanocomposite film demonstrated good antibacterial activity against all strains tested. Furthermore, macroscopic analysis shows that the wound treated with GG/ZnONP + MWCNT bionanocomposite film recovered completely (100%) in 14 days, compared to pure GG film (90.76%) and negative control (77.40%). As a result, the GG/ZnONP + MWCNT bionanocomposite film could be a promising wound dressing material.

18.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563518

RESUMO

Hepatitis B virus (HBV) infection persists as a major global health problem despite the availability of HBV vaccines for disease prevention. However, vaccination rates remains low in some regions of the world, driving the need for novel strategies to minimise infections and prevent disease progression. Thus, understanding of perturbed molecular signaling events during early phases of HBV infection is required. Phosphosignaling is known to be involved in the HBV infection processes, yet systems-level changes in phosphosignaling pathways in the host during infection remain unclear. To this end, we performed phosphoproteome profiling on HBV-infected HepG2-NTCP cells. Our results showed that HBV infection drastically altered the host phosphoproteome and its associated proteins, including kinases. Computational analysis of this phosphoproteome revealed dysregulation of the pathways involved in immune responses, cell cycle processes, and RNA processing during HBV infection. Kinase Substrate Enrichment Analysis (KSEA) identified the dysregulated activities of important kinases, including those from CMGC (CDK, MAPK, GSK, and CLK), AGC (protein kinase A, G, and C), and TK (Tyrosine Kinase) families. Of note, the inhibition of CLKs significantly reduced HBV infection in HepG2-NTCP cells. In all, our study unravelled the aberrated phosphosignaling pathways and the associated kinases, presenting potential entry points for developing novel therapeutic strategies for HBV treatment.


Assuntos
Hepatite B , Simportadores , Células Hep G2 , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo
19.
PLoS One ; 17(4): e0266056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35404945

RESUMO

BACKGROUND: Ever since COVID-19 was declared a pandemic, the world medical landscape has changed dramatically. As cardiac surgeons we not only have the duty to protect our patients and staff from COVID-19 infection, but we are also tasked with the responsibility to ensure those cardiovascular patients awaiting surgery are not harmed from an extended delay in surgery as the world comes to a halt from COVID-19. Currently there is limited literature on the outcome of cardiac surgery in the pre-operative Covid positive group. In this study we aim to assess the safety and outcome of patients undergoing cardiac surgery following Covid-19 infection. PATIENTS AND METHODS: This was a single centre retrospective observational study. All patients undergoing open heart surgery at Institut Jantung Negara from June 2020 to July 2021 were included in this study. Patients who were Covid positive pre-operatively were identified. Data from patient medical records collected contemporaneously were reviewed and analysed, supplemented by telephone call interviews after discharge. RESULTS: 2368 patients underwent open heart surgery from June 2020 until July 2021 in our centre. Of these, 0.5% (12 patients) were identified as Covid positive pre-operatively. Mean age of patients were 59.1 ± 14.8 years old. Mean Ejection Fraction was 46.4 ± 12.9. Most patients (75%) were asymptomatic with covid infection and only one patient were admitted to hospital for Covid infection. Mean duration from Covid PCR positive swab to surgery were 46.3 ± 32.7days. Most of the patients (66.7%) underwent operation on an emergency or urgent basis. Median time to extubation was 1 day. Median ICU length of stay was 1 day. 25% patients required non-invasive ventilation post-operatively and one patient was discharged home on long term oxygen therapy. There were 2 deaths- none of which were covid related mortality. CONCLUSION: Cardiac surgery could be performed safely in patients with pre-operative Covid-19 infection after a period of recovery, especially in the asymptomatic to mild category of infection. Multi-disciplinary team approach may be useful in deciding the timing of surgery for complex cases.


Assuntos
COVID-19 , Procedimentos Cirúrgicos Cardíacos , Adulto , Idoso , COVID-19/epidemiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Resultado do Tratamento
20.
J Environ Manage ; 311: 114832, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303596

RESUMO

Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA