Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 19(5): 055001, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24788369

RESUMO

A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Hemodinâmica , Análise Espectral/métodos , Animais , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Hemoglobinas/análise , Hemoglobinas/química , Hemorragia/fisiopatologia , Oxirredução , Oxiemoglobinas/análise , Oxiemoglobinas/química , Coelhos , Cianeto de Sódio/toxicidade
2.
Toxicol Sci ; 115(2): 569-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20335280

RESUMO

Cyanide inhibits aerobic metabolism by binding to the binuclear heme center of cytochrome c oxidase (CcOX). Amyl nitrite and sodium nitrite (NaNO(2)) antagonize cyanide toxicity in part by oxidizing hemoglobin to methemoglobin (mHb), which then scavenges cyanide. mHb generation is thought to be a primary mechanism by which the NO(2)(-) ion antagonizes cyanide. On the other hand, NO(2)(-) can undergo biotransformation to generate nitric oxide (NO), which may then directly antagonize cyanide inhibition of CcOX. In this study, nitrite-mediated antagonism of cyanide inhibition of oxidative phosphorylation was examined in rat dopaminergic N27 cells. NaNO(2) produced a time- and concentration-dependent increase in whole-cell and mitochondrial levels of NO. The NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxy 3-oxide (PTIO) reversed this increase in cellular and mitochondrial NO. NO generated from NaNO(2) decreased cellular oxygen consumption and inhibited CcOX activity. PTIO reversed the NO-mediated inhibition, thus providing strong evidence that NO mediates the action of NaNO(2). Under similar conditions, KCN (20muM) inhibited cellular state-3 oxygen consumption and CcOX activity. Pretreatment with NaNO(2) reversed KCN-mediated inhibition of both oxygen consumption and CcOX activity. The NaNO(2) antagonism of cyanide was blocked by pretreatment with the NO scavenger PTIO. It was concluded that NaNO(2) antagonizes cyanide inhibition of CcOX by generating of NO, which then interacts directly with the binding of KCN x CcOX to reverse the toxicity. In vivo antagonism of cyanide by NO(2)(-) appears to be due to both generation of mHb and direct displacement of cyanide from CcOX by NO.


Assuntos
Substâncias para a Guerra Química/toxicidade , Dopamina/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Cianeto de Hidrogênio/toxicidade , Neurônios/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Nitrito de Sódio/farmacologia , Animais , Linhagem Celular Transformada , Óxidos N-Cíclicos/farmacologia , Antagonismo de Drogas , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Sequestradores de Radicais Livres/farmacologia , Cianeto de Hidrogênio/metabolismo , Imidazóis/farmacologia , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Ratos
3.
J Pharmacol Exp Ther ; 332(1): 97-105, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19841471

RESUMO

Cyanide is a potent neurotoxicant that can produce dopaminergic neuronal death in the substantia nigra and is associated with a Parkinson-like syndrome. In this study involvement of Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a BH3-only Bcl-2 protein, in cyanide-induced death of dopaminergic cells was determined in mice and Mes 23.5 cells. Treatment of mice with cyanide up-regulated BNIP3 and Bax expression in tyrosine hydroxylase (TH)-positive cells of the substantia nigra, and progressive loss of TH-positive neurons was observed over a 9-day period. In Mes 23.5 dopaminergic cells, cyanide stimulated translocalization of BNIP3 to both endoplasmic reticulum (ER) and mitochondria. In ER, BNIP3 stimulated release of Ca(2+) into the cytosol, followed by accumulation of mitochondrial Ca(2+), resulting in reduction of mitochondrial membrane potential (Deltapsi(m)) and eventually cell death. Cyanide also activated Bax to colocalize with BNIP3 in ER and mitochondria. Forced overexpression of BNIP3 activated Bax, whereas gene silencing reduced Bax activity. Knockdown of Bax expression by small interfering RNA blocked the BNIP3-mediated changes in ER and mitochondrial Ca(2+) to block cyanide-induced mitochondrial dysfunction and cell death. These findings show that BNIP3-mediates cyanide-induced dopaminergic cell death through a Bax downstream signal that mobilizes ER Ca(2+) stores, followed by mitochondrial Ca(2+) overload.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Dopamina/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/biossíntese , Cianeto de Potássio/toxicidade , Proteína X Associada a bcl-2/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Regulação para Cima
4.
FASEB J ; 23(10): 3405-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19535684

RESUMO

BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3) is a BH3-only proapoptotic member of the Bcl-2 family. Because the interaction of Bcl-2 proteins with intracellular Ca(2+) stores has been linked to apoptosis, the role of Ca(2+) transfer between endoplasmic reticulum (ER) and mitochondria in BNIP3-mediated cell death was determined in a rat dopaminergic neuronal cell line, Mes 23.5. BNIP3 mutants were constructed to target either ER or mitochondria. Localization of BNIP3 to the ER membrane facilitated release of Ca(2+) and subsequently increased uptake of Ca(2+) into mitochondria. Excessive accumulation of mitochondrial Ca(2+) decreased mitochondrial membrane potential (DeltaPsi(m)), resulting in execution of a caspase-independent cell death. Reduction of ER Ca(2+) induced by ER-targeted BNIP3 and the subsequent cell death was blocked by the antiapoptotic protein, Bcl-2. On the other hand, mitochondria-targeted BNIP3 initiated apoptosis by a Ca(2+)-independent mechanism by inducing mitochondrial pore transition and dissipation of DeltaPsi(m). The disruption of DeltaPsi(m) and cell death was not blocked by Bcl-2 overexpression. These findings show that BNIP3 undergoes a dual subcellular localization and initiates different cell death signaling events in the ER and mitochondria. Bcl-2 counters the BNIP3-initiated mobilization of ER Ca(2+) depletion to reduce the level of apoptosis.


Assuntos
Apoptose , Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Proto-Oncogênicas/genética , Ratos
5.
Appl Immunohistochem Mol Morphol ; 16(6): 562-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18948825

RESUMO

BACKGROUND: Assessment of HER2 by immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) is a standard practice for breast carcinomas. Testing is associated with a 20% disagreement between laboratories. The College of American Pathologists (CAP) guidelines for HER2 testing include validation of HER2 test methods by achieving 95% concordance with another validated method. Our laboratory requires IHC 3+ FISH nonamplified specimens to undergo retesting by polymerase chain reaction (PCR). A random sample of IHC 2+ cases are routinely tested by PCR. We found this practice useful for resolving discrepancies in HER2 testing. METHODS: At clinician request, seventy-nine 3+ and one hundred forty-eight 2+ cases were tested by FISH. In 22 cases, IHC was 3+ but FISH was nonamplified. These 22 cases underwent HER2 LightCycler monoplex polymerase chain reaction (MPCR) testing. Seventeen 2+ nonamplified cases were tested by MPCR. RESULTS: Twenty-one 3+, FISH nonamplified cases were found to be MPCR nonamplified. One IHC 3+, FISH nonamplified case was MPCR amplified. Seventeen 2+, FISH nonamplified cases were MPCR nonamplified. In all but one case, FISH and MPCR were concordant. DISCUSSION: American Society of Clinical Oncology/CAP guidelines propose validation of testing procedures by showing 95% concordance with a validated test for positive and negative assays. Specific actions are not recommended to resolve discordances between tests. Our laboratory uses 3 different modalities for HER2 testing. We have found that our 2 methods for testing gene amplification status show a higher degree of concordance between themselves than either did with IHC. Review of the 3+ IHC nonamplified cases showed them to have a dark, granular circumferential staining pattern.


Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma/diagnóstico , Genes erbB-2 , Imuno-Histoquímica/métodos , Hibridização in Situ Fluorescente/métodos , Reação em Cadeia da Polimerase/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma/genética , Carcinoma/patologia , Erros de Diagnóstico/prevenção & controle , Erros de Diagnóstico/normas , Feminino , Humanos , Imuno-Histoquímica/normas , Hibridização in Situ Fluorescente/normas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
7.
Toxicol Sci ; 101(1): 101-11, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17906319

RESUMO

Acute cyanide toxicity is attributed to inhibition of cytochrome c oxidase (CcOX), the oxygen-reducing component of mitochondrial electron transport; however, the mitochondrial action of cyanide is complex and not completely understood. State-3 oxygen consumption and CcOX activity were studied in rat N27 mesencephalic cells to examine the functional interaction of cyanide and nitric oxide (NO). KCN produced a concentration-dependent inhibition of cellular respiration. Cyanide's median inhibitory concentration (IC50) of oxygen consumption (13.2 +/- 1.8microM) was higher than the CcOX IC50 (7.2 +/- 0.1microM). Based on respiratory threshold analysis, 60% inhibition of CcOX was necessary before oxygen consumption was decreased. Addition of high levels of exogenous NO (100microM S-nitroso-N-acetyl-DL-penicillamine) attenuated cyanide inhibition of both respiration and CcOX. On the other hand, when endogenous NO generation was blocked by an NOS inhibitor (N(omega)-monomethyl-L-arginine ester), the cyanide IC50 for both respiration and CcOX increased to 59.6 +/- 0.9microM and 102 +/- 10microM, respectively, thus showing constitutive, low-level NO production enhanced cyanide inhibition. Laser scanning cytometry showed that cyanide elevated mitochondrial NO, which then was available to interact with CcOX to enhance the inhibition. It is concluded that the rapid, potent action of cyanide is due in part to mitochondrial generation of NO, which enhances inhibition of CcOX. At low mitochondrial oxygen tensions, the cyanide-NO interaction would be increased. Also, the antidotal action of sodium nitrite is partly explained by generation of high mitochondrial levels of NO, which antagonizes the CcOX inhibition.


Assuntos
Cianetos/toxicidade , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Óxido Nítrico/fisiologia , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Hibridização In Situ , Cinética , Citometria de Varredura a Laser , Mesencéfalo/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Consumo de Oxigênio/efeitos dos fármacos , Ratos , S-Nitroso-N-Acetilpenicilamina/farmacologia , ômega-N-Metilarginina/farmacologia
8.
Toxicol Sci ; 93(1): 136-45, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16782780

RESUMO

Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear factor PPAR family that regulates a variety of cellular functions, including lipid metabolism, cellular oxidative stress defense, and inflammatory responses. Based on the report that Wy14,643, a PPARalpha agonist, can upregulate uncoupling protein-2 (UCP-2), this study was conducted in primary cortical cells to determine if PPARalpha activation enhances cyanide-induced neurotoxicity through changes in the level of UCP-2. PCR and Western blot analysis showed that Wy14,643 upregulated UCP-2 transcriptionally over a 12-h period. This response was mediated by PPARalpha since it was blocked by MK886, a selective PPARalpha antagonist. The effect of UCP-2 upregulation on the cytotoxic response to cyanide was quantitated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (apoptosis) and propidium iodide staining (necrosis). Wy14,643 switched the mode of cyanide-induced cell death from apoptosis to necrosis. Cell death was preceded by marked mitochondrial dysfunction, as reflected by depletion of ATP and reduction of the mitochondrial membrane potential (DeltaPsim). Knock down of UCP-2 expression by RNA interference blocked the Wy14,643-mediated enhancement of cyanide-induced mitochondrial dysfunction and the switch of the cell death mode, thus confirming that the response was mediated by upregulation of UCP-2. This study shows that PPARalpha activation can upregulate UCP-2 expression, which in turn enhances cyanide-induced necrotic cell death through an increase of mitochondrial dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Cianetos/farmacologia , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , PPAR alfa/fisiologia , Regulação para Cima/fisiologia , Animais , Sequência de Bases , Primers do DNA , Necrose , Pirimidinas/farmacologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Desacopladora 2
9.
J Pharmacol Exp Ther ; 314(3): 1338-45, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15937145

RESUMO

Uncoupling protein 2 (UCP-2) regulates mitochondrial function by increasing proton leak across the inner membrane to dissociate respiration from ATP synthesis and reduce reactive oxygen species generation. A number of studies have shown that UCP-2 expression protects cells from oxidative stress mediated injuries. In the current study, we show UCP-2-mediated reduction in mitochondrial function contributes to the mitochondrial dysfunction and the necrotic death of primary cultured mesencephalic cells (MCs) after exposure to cyanide, a complex IV inhibitor. The necrotic cell death was directly related to the level of mitochondrial dysfunction, as shown by reduction in ATP levels and decreased mitochondrial membrane potential. Treatment with cyanide for 6 h or longer upregulated UCP-2 expression. Blockade of up-regulation with a transcription or a translational inhibitor reduced the response to cyanide. Knockdown with RNAi or transfection with a UCP-2 dominant-negative interfering mutant reduced the cyanide-induced mitochondrial dysfunction and cell death, showing that constitutive expression of UCP-2 plays a role in the response to cyanide. Overexpression of UCP-2 by transfection with human full-length cDNA potentiated the cyanide toxicity. These findings indicate that UCP-2 can serve as a regulator of mitochondria-mediated necrotic cell death, in which enhanced expression can increase the vulnerability of primary MCs to injury due to complex IV-mediated inhibition by cyanide.


Assuntos
Cianetos/toxicidade , Proteínas de Membrana Transportadoras/fisiologia , Mesencéfalo/efeitos dos fármacos , Proteínas Mitocondriais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Canais Iônicos , Mesencéfalo/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Necrose , Ratos , Ratos Sprague-Dawley , Proteína Desacopladora 2 , Regulação para Cima
10.
Toxicol Appl Pharmacol ; 195(2): 194-202, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-14998685

RESUMO

Execution of apoptosis can involve activation of the caspase family of proteases. Recent studies show that caspase inhibition can switch the morphology of cell death from apoptotic to necrotic without altering the level of death among cell populations. In the present study, the effect of caspase inhibition on cortical (CX) cell death induced by cyanide was investigated. In primary cultured CX cells exposed to cyanide (400 microM), death was primarily apoptotic as indicated by positive TUNEL staining. Reactive oxygen species (ROS) generation and subsequent caspase activation mediated the apoptosis. Inhibition of the caspase cascade with zVAD-fmk switched the apoptotic response to necrotic cell death, as assessed by increased cellular efflux of LDH and propidium iodide uptake by the cells. The change in death mode was accompanied by a marked increase in poly (ADP-ribose) polymerase-1 (PARP-1) activity, reactive oxygen species (ROS) generation, a reduction in the mitochondrial membrane potential (Delta psi(m)), and reduced cellular ATP. Prior treatment of cells with 3-aminobenzamide (3-AB), a PARP-1 inhibitor, prevented the cells from undergoing necrosis and preserved intracellular ATP levels. These findings indicate that apoptosis and necrosis share common initiation pathways and caspase inhibition can switch the apoptotic response to necrosis. Inhibition of PARP-1 preserves cellular ATP levels and in turn blocks execution of the necrotic death pathway.


Assuntos
Inibidores de Caspase , Poli(ADP-Ribose) Polimerases/metabolismo , Cianeto de Potássio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Caspase 3 , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Ratos , Ratos Sprague-Dawley
11.
Biochem J ; 379(Pt 3): 805-13, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-14741051

RESUMO

In cyanide-induced apoptosis, an increase in cytosolic free Ca2+ and generation of reactive oxygen species are initiation stimuli for apoptotic cell death. Previous studies have shown that cyanide-stimulated translocation of Bax (Bcl-associated X protein) to mitochondria is linked with release of cytochrome c and subsequent activation of a caspase cascade [Shou, Li, Prabhakaran, Borowitz and Isom (2003) Toxicol. Sci. 75, 99-107]. In the present study, the relationship of the cyanide-induced increase in cytosolic free Ca2+ to activation of Bad ( Bcl-2/Bcl-X(L)- antagonist, causing cell death) was determined in cortical cells. Bad is a Ca2+-sensitive pro-apoptotic Bcl-2 protein, which on activation translocates from cytosol to mitochondria to initiate cytochrome c release. In cultured primary cortical cells, cyanide produced a concentration- and time-dependent translocation of Bad from cytosol to mitochondria. Translocation occurred early in the apoptotic response, since mitochondrial Bad was detected within 1 h of cyanide treatment. Mitochondrial levels of the protein continued to increase up to 12 h post-cyanide exposure. Concurrent with Bad translocation, a Ca2+-sensitive increase in cellular calcineurin activity was observed. Increased cytosolic Ca2+ and calcineurin activation stimulated Bad translocation since BAPTA [bis-(o-aminophenoxy)ethane-N, N, N', N'-tetra-acetic acid], an intracellular Ca2+ chelator, and cyclosporin A, a calcineurin inhibitor, significantly reduced translocation. BAPTA also blocked release of cytochrome c from mitochondria as well as apoptosis. Furthermore, treatment of cells with the calcineurin inhibitors cyclosporin A or FK506 blocked the apoptotic response, linking calcineurin activation and the subsequent translocation of Bad to cell death. These observations show that by inducing a rapid increase in cytosolic free Ca2+, cyanide can partially initiate the apoptotic cascade through a calcineurin-mediated translocation of Bad to mitochondria.


Assuntos
Apoptose/efeitos dos fármacos , Calcineurina/metabolismo , Proteínas de Transporte/metabolismo , Cianetos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Inibidores de Calcineurina , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Quelantes/metabolismo , Quelantes/farmacologia , Cianetos/antagonistas & inibidores , Citocromos c/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína de Morte Celular Associada a bcl , Proteínas Quinases p38 Ativadas por Mitógeno
12.
Neurotoxicology ; 24(3): 333-42, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12782099

RESUMO

Dopamine (DA)-induced neurotoxicity is potentiated when cellular metabolism is compromised. Since cyanide is a neurotoxin that produces mitochondrial dysfunction and stimulates intracellular generation of reactive oxygen species (ROS), KCN was used to study DA-induced apoptosis in primary cultured mesencephalon cells. Treatment of neurons with DA (300 microM) for 24h produced apoptosis as determined by TUNEL staining, DNA fragmentation and increased caspase activity. Pretreatment with KCN (100 microM) 30min prior to DA increased the number of cells undergoing apoptosis. When added to the cells alone, this concentration of KCN did not induce apoptosis. DA stimulated intracellular generation of ROS, and treatment with KCN enhanced ROS generation. Treatment of cells with glutathione or uric acid (antioxidants/scavengers) attenuated both the increase in ROS generation and the apoptosis, demonstrating that ROS are initiators of the cytotoxicity. Studies on the sequence of events mediating the response showed that DA-induced depolarization of the mitochondrial membrane was dependent on ROS generation and KCN enhanced this action of DA. Following changes in mitochondrial membrane potential, cytochrome c was released from mitochondria, leading to caspase activation and eventually cell death. These results demonstrate that oxidative stress and mitochondrial dysfunction are initiators of DA-induced apoptosis. Subsequent cytochrome c release activates the caspase effector component of apoptosis. Cyanide potentiates the neurotoxicity of DA by enhancing the generation of ROS and impairing mitochondrial function.


Assuntos
Apoptose/efeitos dos fármacos , Cianetos/farmacologia , Dopamina/farmacologia , Mesencéfalo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/fisiologia , Células Cultivadas , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
13.
J Neurochem ; 81(4): 842-52, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12065643

RESUMO

Cyanide induces apoptosis through cytochrome c activated caspase cascade in primary cultured cortical neurons. The underlying mechanism for cytochrome c release from mitochondria after cyanide treatment is still unclear. In this study, the roles of endogenous Bcl-2 proteins in cyanide-induced apoptosis were investigated. After cyanide (100-500 microm) treatment for 24 h, two pro-apoptotic Bcl-2 proteins, Bcl-X(S) and Bax were up-regulated as shown by western blot and RT-PCR analysis. The expression levels of two antiapoptotic Bcl-2 proteins, Bcl-2 and Bcl-X(L), remained unchanged after cyanide treatment, whereas the mRNA levels of Bcl-X(S) and Bax began to increase within 2 h and their protein levels increased 6 h after treatment. NF-kappaB, a redox-sensitive transcription factor activated after cyanide treatment, is responsible for the up-regulation of Bcl-X(S) and Bax. SN50, which is a synthetic peptide that blocks translocation of NF-kappaB from cytosol to nucleus, inhibited the up-regulation of Bcl-X(S) and Bax. Similar results were obtained using a specific kappaB decoy DNA. NMDA receptor activation and reactive oxygen species (ROS) generation are upstream events of NF-kappaB activation, as blockade of these two events by MK801, l-NAME or PBN inhibited cyanide-induced up-regulation of Bcl-X(S) and Bax. Up-regulation of pro-apoptotic Bcl-X(S) and Bax contributed to cyanide-induced cytochrome c release, because SN50 and a specific Bax antisense oligodeoxynucleotide significantly reduced release of cytochrome c from mitochondria as shown by western blot analysis. It was concluded that NF-kappaB-mediated up-regulation of Bcl-X(S) and Bax is involved in regulating cytochrome c release in cyanide-induced apoptosis.


Assuntos
Apoptose , Cianetos/toxicidade , Grupo dos Citocromos c/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Fragmentação do DNA , Inibidores Enzimáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/antagonistas & inibidores , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oxirredução , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2 , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA