Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39036941

RESUMO

Surface modification using zwitterionic 2-methacryloyloxyethylphosphorylcholine (MPC) polymers is one of the most reasonable ways to prepare medical devices that can suppress undesired biological reactions such as blood coagulation. Usable MPC polymers are hydrophilic and water soluble, and their surface modification strategy involves exploiting the copolymer structures by adding physical or chemical bonding moieties. In this study, we developed copolymers composed of MPC, hydrophobic anchoring moiety, and chemical cross-linking unit to clarify the role of hydrophobic interactions in achieving biocompatible and long-term stable coatings. The four kinds of MPC copolymers with cross-linking units, such as 3-methacryloxypropyl trimethoxysilane (MPTMSi), and four different hydrophobic anchoring moieties, such as 3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (MPTSSi) named as PMMMSi, n-butyl methacrylate (BMA) as PMBSi, 2-ethylhexyl methacrylate (EHMA) as PMESi, and lauryl methacrylate as PMLSi, were synthesized and coated on polydimethylsiloxane, polypropylene (PP), and polymethyl pentene. These copolymers were uniformly coated on the substrate materials PP and poly(methyl pentene) (PMP), to achieve hydrophilic and electrically neutral coatings. The results of the antibiofouling test showed that PMBSi repelled the adsorption of fluorescence-labeled bovine serum albumin the most, whereas PMLSi repelled it the least. Notably, all four copolymers suppressed platelet adhesion similarly. The variations in protein adsorption quantities among the four copolymer coatings were attributed to their distinct swelling behaviors in aqueous environments. Further investigations, including 3D scanning force microscopy and neutron reflectivity measurements, revealed that the PMLSi coating exhibited a higher water intake under aqueous conditions in comparison to the other coatings. Consequently, all copolymer coatings effectively prevented the invasion of platelets but the proteins penetrated the PMLSi network. Subsequently, the dynamic stability required to induce shear stress was evaluated using a circulation system. The results demonstrated that the PMMMSi and PMLSi coatings on PMP and PP exhibited exceptional platelet repellency and maintained high stability during circulation. This study highlights the potential of hydrophobic moieties to improve hemocompatibility and stability, offering potential applications in medical devices.

2.
Artif Organs ; 48(3): 309-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877220

RESUMO

BACKGROUND: The objective of this study was to design a new wireless left ventricular assist device (LVAD) that can be charged without using a conventional transcutaneous energy transfer system (TETS). METHODS: Our new wireless LVAD was a hybrid pump operating in two different modes: magnetic and electric modes. The pump was driven wirelessly by extracorporeal rotating magnets in magnetic mode, whereas it was driven by electricity provided by an intracorporeal battery in electric mode. A magnetic torque transmission system was introduced to wirelessly transmit torque to the pump impeller. The intracorporeal battery was charged in magnetic mode making use of electromagnetic coils as a generator, whereas the coils were used as a motor in electric mode. To demonstrate the feasibility of our system, we conducted a bench-top durability test for 1 week. RESULTS: Our hybrid pump had shown sufficient pump performance as a LVAD, with a head pressure of approximately 80 mm Hg and a flow volume of 5.0 L/min, for 1 week. The intracorporeal battery was wirelessly charged enough to power electric mode for 2.5 h a day throughout the 1-week durability test. CONCLUSIONS: Our hybrid wireless LVAD system demonstrated the possibility of a wireless LVAD and has the potential to reduce medical complications of LVAD therapy.


Assuntos
Coração Auxiliar , Magnetismo , Imãs , Desenho de Equipamento
3.
PLoS One ; 18(6): e0287033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315056

RESUMO

We developed "Rattractor" (rat attractor), a system to apply electrical stimuli to the deep brain of a rat as it stays in a specified region or a virtual cage to demonstrate an instant electrophysiological feedback guidance for animals. Two wire electrodes were implanted in the brains of nine rats. The electrodes targeted the medial forebrain bundle (MFB), which is a part of the reward system in the deep brain. Following the recovery period, the rats were placed in a plain field where they could move freely, but wired to a stimulation circuit. An image sensor installed over the field detected the subject's position, which triggered the stimulator such that the rat remained within the virtual cage. We conducted a behavioral experiment to evaluate the sojourn ratio of rats residing in the region. Thereafter, a histological analysis of the rat brain was performed to confirm the position of the stimulation sites in the brain. Seven rats survived the surgery and the recovery period without technical failures such as connector breaks. We observed that three of them tended to stay in the virtual cage during stimulation, and this effect was maintained for two weeks. Histological analysis revealed that the electrode tips were correctly placed in the MFB region of the rats. The other four subjects showed no apparent preference for the virtual cage. In these rats, we did not find electrode tips in the MFB, or could not determine their positions. Almost half of the rats tended to remain inside the virtual cage when position-related reward stimuli were triggered in the MFB region. Notably, our system did not require previous training or sequential interventions to affect the behavioral preferences of subjects. This process is similar to the situation in which sheep are chased by a shepherd dog in the desired direction.


Assuntos
Estimulação Encefálica Profunda , Animais , Ratos , Cães , Ovinos , Encéfalo , Eletrofisiologia Cardíaca , Instalação Elétrica , Eletricidade
4.
ASAIO J ; 69(2): e73-e79, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716071

RESUMO

This study aimed to design a new wireless left ventricular assist device (LVAD) that solved the driveline problem of current LVADs and the heat problem of the transcutaneous energy transfer system (TETS). Our new wireless LVAD consisted of two blood pumps capable of driving using extracorporeal magnets and an intracorporeal battery pack. When one pump was driven, the other pump was stopped. The battery pack was wirelessly and slowly charged using TETS with low-power transmission, whereas the magnetic pump was driven wirelessly by extracorporeal magnets. We demonstrated the feasibility of our system in a bench-top durability test for 7 days. The distance between the extracorporeal magnets and the magnetic pump was 27.5 mm. Our LVAD system had steadily provided sufficient pressure and flow volume (approximately 108 mmHg and 5.0 L/min, respectively) to the test loop for 7 days. Although loss of synchronism occurred once during the test, it recovered within a few minutes. The results demonstrate the feasibility of the proposed wireless LVAD system. Further technical improvements are required in our system, such as downsizing the electric devices inside the body, to conduct an in vivo test for the next step.


Assuntos
Coração Auxiliar , Imãs , Desenho de Prótese
5.
Skin Res Technol ; 29(1): e13242, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36426825

RESUMO

BACKGROUND: Transepidermal water loss (TEWL) is often used as an index for skin barrier function. The skin barrier tester, SBT-100 (Rousette Strategy Inc), measures the TEWL, water evaporation time, and time constant by contacting the skin and diffusing water into the closing measurement chamber. However, the relationship between the TEWL and time constant has not been sufficiently investigated. This study involved analyzing the underlying measurement principle and obtaining data through two experiments. MATERIALS AND METHODS: The TEWL and time constant were measured using SBT-100. Experiment 1 produced a simple simulation model for continuous water evaporation from the skin using a moisture-permeable film. In experiment 2, four skin sites of 43 healthy volunteers were examined from May to September 2018. RESULTS: In experiment 1, the TEWL increased and time constant decreased, following an increase in humidity in the external environment. Both parameters demonstrated significant negative correlation (drying: ρ = -0.832, p < 0.001). For the 43 healthy volunteers who participated in experiment 2, their TEWL increased and time constant decreased in summer. For all skin measurement sites, both data demonstrated significant negative correlation (forehead: ρ = -0.909, p < 0.001; back of the left hand: ρ = -0.829, p < 0.001; left lateral elbow: ρ = -0.896, p < 0.001; left lateral malleolus: ρ = -0.865, p < 0.001). CONCLUSION: Results indicated that the time constant is significantly correlated with TEWL. Furthermore, the time constant can be used as a parameter for evaluating skin barrier function.


Assuntos
Fenômenos Fisiológicos da Pele , Água , Humanos , Perda Insensível de Água , Pele/diagnóstico por imagem , Difusão
6.
J Artif Organs ; 20(3): 200-205, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28516307

RESUMO

1/R control is a physiological control method of the total artificial heart (TAH) with which long-term survival was obtained with animal experiments. However, 1/R control occasionally diverged in the undulation pump TAH (UPTAH) animal experiment. To improve the control stability of the 1/R control, appropriate control time constant in relation to characteristics of the baroreflex vascular system was investigated with frequency analysis and numerical simulation. In the frequency analysis, data of five goats in which the UPTAH was implanted were analyzed with first Fourier transform technique to examine the vasomotion frequency. The numerical simulation was carried out repeatedly changing baroreflex parameters and control time constant using the elements-expanded Windkessel model. Results of the frequency analysis showed that the 1/R control tended to diverge when very low frequency band that was an indication of the vasomotion frequency was relative high. In numerical simulation, divergence of the 1/R control could be reproduced and the boundary curves between the divergence and convergence of the 1/R control varied depending on the control time constant. These results suggested that the 1/R control tended to be unstable when the TAH recipient had high reflex speed in the baroreflex vascular system. Therefore, the control time constant should be adjusted appropriately with the individual vasomotion frequency.


Assuntos
Barorreflexo/fisiologia , Artérias Carótidas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Coração Artificial , Resistência Vascular/fisiologia , Animais , Modelos Animais de Doenças , Cabras , Insuficiência Cardíaca/cirurgia
7.
J Artif Organs ; 20(3): 215-220, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28424884

RESUMO

In the emergency care field, early treatment of acute heart or respiratory failure has been a global concern. In severe cases, patients are frequently required to be on an extracorporeal membrane oxygenator (ECMO) life support. To make the ECMO system more compact and portable, we proposed a sequential flow-type centrifugal pump named the sequential flow pump (SFP). In this study, principle and basic properties of this novel blood pump were examined by computational fluid dynamic (CFD) analysis and an experimental model. In the SFP, fluid is given centrifugal force sequentially twice with a single closed impeller. This sequential pressurization mechanism enables high-pressure output without high impeller speed. To realize easy integration of a blood pump with an artificial lung, the inlet and outlet ports are located at lateral side and center of the pump, respectively, which is the reverse configuration of conventional centrifugal pumps. The computational model was composed for CFD analysis and the experimental model was developed for the experiment of the actual pump. For both models, dimension of the impeller and volute was designed to be equal. In the CFD analysis, the SFP could generate higher performance than the single pressurization model with the same rotational speed of the impeller. Basic property of the experimental model was very similar to that of the computational model. The results showed the possibility that the SFP would be more suitable for the compact ECMO system than conventional centrifugal pumps.


Assuntos
Simulação por Computador , Coração Auxiliar , Desenho de Equipamento , Humanos , Teste de Materiais
8.
Ann Biomed Eng ; 45(5): 1352-1364, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054160

RESUMO

There are recent reports of hybrid tissue-fabric materials with good performance-high biocompatibility and high mechanical strength. In this study, we demonstrate the capability of a hybrid material as a long-term filter for blood proteins. Polyester fabrics were implanted into rats to fabricate hybrid tissue-fabric material sheets. The hybrid materials comprised biological tissue grown on the fabric. The materials were extracted from the rat's body, approximately 100 days post-implantation. The tissues were decellularized to prevent immunological rejection. An antithrombogenicity test was performed by dropping blood onto the hybrid material surface. The hybrid material showed lesser blood coagulation than polysulfone and cellulose. Blood plasma was filtered using the hybrid material to evaluate the protein removal percentage and the lifetime of the hybrid material in vitro. The hybrid material showed a comparable performance to conventional filters for protein removal. Moreover, the hybrid material could work as a protein filter for 1 month, which is six times the lifetime of polysulfone.


Assuntos
Coagulação Sanguínea , Fibrinolíticos/química , Membranas Artificiais , Poliésteres/química , Ácido Poliglicólico/química , Celulose/química , Humanos , Polímeros/química , Sulfonas/química
9.
Nat Commun ; 7: 11425, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125910

RESUMO

In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-µm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.


Assuntos
Materiais Biocompatíveis/química , Eletrocardiografia/instrumentação , Eletrônica/instrumentação , Hidrogéis/química , Nanotubos de Carbono/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Derme/efeitos dos fármacos , Derme/fisiologia , Eletrodos , Eletrônica/métodos , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Reação a Corpo Estranho/prevenção & controle , Cabras , Hidrogéis/farmacologia , Masculino , Naftalenos/química , Pericárdio/efeitos dos fármacos , Pericárdio/fisiologia , Maleabilidade , Polietilenos/química , Coelhos , Ratos
10.
J Artif Organs ; 19(3): 219-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27022734

RESUMO

Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.


Assuntos
Coração Artificial , Coração Auxiliar , Viscosidade Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Pressão , Fluxo Pulsátil , Sístole/fisiologia , Viscosidade
11.
Artif Organs ; 40(12): 1137-1145, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27005487

RESUMO

Histopathological analysis can provide important information in long-term experiments with total artificial heart (TAH). Recently, a new type of blood pump, the helical flow total artificial heart (HF-TAH) was developed. This study aimed to investigate the changes in selected vital organs in animal experiments with implanted HF-TAH. Samples from lung, liver, and kidneys from two female goats (No. 1301 and No. 1304) with implanted HF-TAH were analyzed. Tissue samples were fixed in 10% formaldehyde and 4 µm thick transverse sections were stained with hematoxylin-eosin (HE). Additional staining was done for detection of connective tissue (Masson-Goldner stain) and for detection of iron (hemosiderin) deposits (Perls stain). Sections were scanned at 100× and 500× magnification with a light microscope. Experiment no. 1301 survived 100 days (cause of termination was heavy damage of the right pump); experimental goat no.1304 survived 68 days and was sacrificed due to severe right hydrodynamic bearing malfunction. Histopathological analysis of liver samples proved signs of chronic venostasis with limited focal necrotic zones. Dilated tubules, proteinaceous material in tubular lumen, and hemosiderin deposits were detected in kidney samples. Contamination of the organs by embolized micro-particles was suspected at the autopsy after discovery of visible damage (scratches) of the pump impeller surface (made from titanium alloy) in both experiments. Sporadic deposits of foreign micro-particles (presumably titanium) were observed in most of the analyzed parenchymal organs. However, the described deposits were not in direct connection with inflammatory reactions in the analyzed tissues. Histopathological analysis showed the presence of minimal contamination of the lung, kidney, and liver tissue samples by foreign material (titanium very likely). The analysis showed only limited pathological changes, especially in liver and kidneys, which might be attributed to the influence of artificial perfusion often observed in chronic TAH experiments.


Assuntos
Coração Artificial , Rim/patologia , Fígado/patologia , Pulmão/patologia , Animais , Feminino , Cabras , Coração Artificial/efeitos adversos , Desenho de Prótese , Implantação de Prótese/efeitos adversos , Titânio/análise
12.
Nat Nanotechnol ; 11(5): 472-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26809055

RESUMO

Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 µm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 µm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.


Assuntos
Nanofibras , Pressão , Vasos Sanguíneos , Desenho de Equipamento , Grafite , Nanotubos de Carbono , Sensibilidade e Especificidade
13.
Artif Organs ; 39(8): 670-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26234448

RESUMO

Severe cardiac failure patients require a total artificial heart (TAH) to save life. To realize a TAH that can fit a body of small stature and has high performance, high durability, good anatomical fitting, good blood compatibility, and physiological control, we have been developing the helical flow TAH (HFTAH) with two helical flow pumps with hydrodynamic levitation impeller. Animal experiments of the HFTAH were conducted to perform in vivo studies. The HFTAH was implanted in 13 adult female goats weighing 45.0-64.0 kg. After surgery, neither anti-coagulant nor anti-platelet medication was given systemically. The HFTAH was usually driven with a quasi-pulsatile mode. The 1/R control or ΔP control was applied to control the circulation. The ΔP control is a new method using simplified equation of the 1/R control. The HFTAH could be implanted in all goats with good anatomical fitting. Two goats survived for a long time (100 and 68 days). Major causes of termination were device failure and surgical complications. In the device failure, trouble with hydrodynamic bearing was conspicuous. In the two long-term survived goats, experiments were terminated with bearing instability that was probably caused by the suction effect. In these goats, hemolysis occurred on postoperative day 88 and 44, which was considered to be relevant to the bearing trouble. Thrombus was found at the broken right bearing of the 100-day survived goat. However, antithrombogenicity of the pump is expected to be good unless bearing trouble occurs. In two long-term survived goats, the 1/R control or ΔP control worked appropriately to prevent the elevation of right atrial pressure. In both goats, hemodynamic parameters changed with the condition of the animals, liver and kidney functions remained almost normal except when recovering from surgery and during hemolysis, and total protein recovered 2 weeks after surgery. Although instability of the hydrodynamic bearing should be improved, performance of the HFTAH with physiological control could be demonstrated.


Assuntos
Coração Artificial , Hemodinâmica , Animais , Feminino , Cabras , Hemólise , Teste de Materiais , Modelos Animais , Desenho de Prótese , Falha de Prótese , Fluxo Pulsátil , Fatores de Tempo
14.
J Artif Organs ; 18(3): 206-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25784463

RESUMO

The helical flow pump (HFP) was invented to be an ideal pump for developing the TAH and the helical flow TAH (HFTAH) using two HFPs has been developed. However, since the HFP is quite a new pump, hydrodynamic characteristics inside the pump are not clarified. To analyze hydrodynamic characteristics of the HFP, flow visualization study using the particle image velocimetry and computational fluid dynamics analysis were performed. The experimental and computational models were developed to simulate the left HFP of the HFTAH and distributions of flow velocity vectors, shear stress and pressure inside the pump were examined. In distribution of flow velocity vectors, the vortexes in the vane were observed, which indicated that the HFP has a novel and quite unique working principle in which centrifugal force rotates the fluid in the helical volutes and the fluid is transferred from the inlet to the outlet helical volutes according to the helical structure. In distribution of shear stress, the highest shear stress that was considered to be occurred by the shunt flow across the impeller was found around the entrance of the inlet helical volute. However, it was not so high to cause hemolysis. This shunt flow is thought to be improved by redesigning the inlet and outlet helical volutes. In distribution of pressure, negative pressure was found near the entrance of the inlet helical volute. However, it was not high. Negative pressure is thought to be reduced with an improvement in the design of the impeller or the vane shape.


Assuntos
Circulação Assistida/instrumentação , Coração Artificial , Simulação por Computador , Desenho de Equipamento , Hemorreologia , Humanos , Modelos Cardiovasculares , Reologia , Estresse Mecânico
15.
J Artif Organs ; 17(4): 301-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25182409

RESUMO

The total artificial heart (TAH) requires physiological control to respond to the metabolic demand of the body. To date, 1/R control is a single physiological control method that can control venous pressure. To realize an implantable 1/R control system, we are developing a new pressure measuring method using absolute pressure sensor. To find a method for absolute pressure sensor, which went well without calibration, concept of left atrial pressure (LAP) estimation using its pulsatile amplitude was proposed. Its possibility was investigated with two long-term survived goats whose hearts were replaced with the helical flow TAHs. In manual control condition, there existed a positive relation between mean LAP (mLAP) and normalized pulsatile amplitude (NPA). Percent systole revealed not to affect the relationship between mLAP and NPA. Dispersion was observed between different pulse rates. As for cardiac output difference (QLD) that is the difference of flow rate between systolic and diastolic phases, similar results were obtained except in low QLDs. In the 1/R control condition, relatively high correlation between mLAP and NPA could be obtained. In estimation of mLAP using the correlating function of individual goat, fairly good correlation was obtained between measured mLAP and estimated mLAP. Despite that further studies are necessary, it was demonstrated that the concept of the LAP estimation could be possible.


Assuntos
Pressão Atrial/fisiologia , Débito Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Coração Artificial , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Cabras , Hemodinâmica/fisiologia
16.
J Artif Organs ; 17(1): 9-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318404

RESUMO

The helical flow pump (HFP) was invented to develop a total artificial heart at the University of Tokyo in 2005. The HFP consists of the multi-vane impeller involving rotor magnets, a motor stator and pump housing having double-helical volutes. To investigate the characteristics of the HFP, computational fluid dynamics analysis was performed. Validation of the computational model was performed with the data of the actual pump. A control computational model in which the vane area corresponded approximately to that of the actual pump was designed for the parametric study. The parametric study was performed varying the vane height, vane width and helical volute pitch. When the vane height was varied from 0.5 to 1.5 times that of the control computational model, the H-Q (pressure head vs. flow) and efficiency curves were translated in parallel with the vane height. When the vane height was two and three times that of the control computational model, the profile of these curves changed. From the results, the best proportion for the vane was considered to be a vane height between 1.5 and 2 times the vane width. The effect of vane width was not very strong compared to that of the vane height. A similar tendency in vane height was observed by varying the helical volute pitch. The best helical volute-pitch size is considered to be between 1.5 and 2 times the vane width. Although further study is necessary to determine the best values for these parameters, the characteristics of the pump parameters in the HFP could be approximately clarified.


Assuntos
Coração Artificial , Hidrodinâmica , Modelos Teóricos
17.
Artigo em Inglês | MEDLINE | ID: mdl-24109776

RESUMO

The present control method used in our helical flow total artificial heart (HFTAH) would only need four parameters. Nowadays, gauge pressure sensors are being used to obtain the pressure needed for control parameters. Nevertheless, there are also many following problems such as calibration, maintenance, offset drift and infection due to the skin-penetrative lines for the usage of gauge pressure sensor. Therefore, it is preferable to find another substitutional way instead of the gauge sensor to measure the pressure. In addition, with an eye to completing an implantable HFTAH, we would like to do without any lines through the experiment animal. Therefore, it was confirmed in this study that whether there is a relation between the left atrial pressure (LAP) and its pulse pressure (amplitude). Subsequently the mean value of LAP and its amplitude were quantified. There are two methods used in this study to process the data. Method one, frequency spectrum analysis, is to quantify the signals by getting the absolute value of amplitude for a fixed heartbeat analysis. Method two, by using the synchronous detection method, it is postulated to be more applicable to variant heartbeat data with 1/R control. By the relation of LAP and the pulse pressure acquired in the above two methods, as long as the amplitude of LAP is known by the absolute pressure sensor, it's able to obtain the mean value of LAP (for it suggests a linear relation). Therefore the characteristic could substitute one of the control parameter (that is the LAP), and the other three parameters will be acquired by estimation thus it doesn't need to measure them additionally. Consequently, it is expected that acquiring LAP by absolute pressure sensor for one of the control parameters could attain to an implantable HFTAH.


Assuntos
Coração Artificial , Animais , Pressão Atrial , Pressão Sanguínea , Retroalimentação , Frequência Cardíaca , Humanos , Modelos Cardiovasculares
18.
Artigo em Inglês | MEDLINE | ID: mdl-24111039

RESUMO

Development have been achieved of a new blood pump for next generation Percutaneous Cardio-Pulmonary Support (PCPS) system and a novel surface coating method for silicone membrane hollow fiber by physical adsorption using a copolymer composed of a 2-Methacryloyloxyethyl phosphorylcholine (MPC) unit and a hydrophobic unit. The new blood pump, named the Troidal Convolution Pump (TCP), is based on the principle of a cascade pump and perfused 5 L/min and 350 mmHg at 2450 rpm. The novel copolymer composed of 30% MPC unit and 3-(methacryloyloxy) propyltris (trimethylsiloxy) silane (MPTSSi) unit (PMMSi30) was the most suitable molecular design on a silicone surface. The PMMSi30 coated surface adsorbed 7.2 % as much protein a non-coated surface adsorbed.


Assuntos
Máquina Coração-Pulmão , Sistemas de Manutenção da Vida/instrumentação , Materiais Revestidos Biocompatíveis , Humanos , Cuidados para Prolongar a Vida , Oxigenadores de Membrana
19.
Artigo em Inglês | MEDLINE | ID: mdl-24110289

RESUMO

To realize a total artificial heart (TAH) with high performance, high durability, good anatomical fitting, and good blood compatibility, the helical flow TAH (HFTAH) has been developed with two helical flow pumps having hydrodynamic levitation impeller. The HFTAH was implanted in goats to investigate its anatomical fitting, blood compatibility, mechanical stability, control stability, and so on. The size of the HFTAH was designed to be 80 mm in diameter and 84 mm wide. The maximum output was 19 L/min against 100 mmHg of pressure head. Eight adult female goats weighting from 45 to 56.3 kg (average 49.7 kg) were used. Under the extracorporeal circulation, natural heart was removed at the atrioventricular groove and the HFTAH was implanted. The HFTAH was driven with a pulsatile mode. The 1/R control was applied when the right atrial pressure recovered. The HFTAH could be implanted with good anatomical fitting in all goats. Two goats survived for more than a week. One goat is ongoing. Other goats did not survive for more than two days with various reasons. In the goats that survived for more than a week, the hydrodynamic bearing was worn and broken, which indicated that the bearing touched to the shaft. The cause was supposed to be the influence of the sucking effect. The potential of the HFTAH could be demonstrated with this study. The stability of the hydrodynamic bearing in a living body, especially the influence of the sucking effect, was considered to be very important and a further study should be necessary.


Assuntos
Coração Artificial , Hemorreologia/fisiologia , Desenho de Prótese , Implantação de Prótese , Animais , Pressão Sanguínea , Feminino , Cabras
20.
Artigo em Inglês | MEDLINE | ID: mdl-24110290

RESUMO

The helical flow pump (HFP) is newly developed blood pomp for total artificial heart (TAH). HFP can work with lower rotational speed than axial and centrifugal blood pump. It can be seen reasonable feature to generate pulsatile flow because high response performance can be realized. In this article, pulsatility of HFP was evaluated using mock circulation loop. Pulsatile flow was generated by modulating the rotational speed in various amplitude and heart rate. In the experiment, relationship between Pump flow, pump head, rotational speed amplitude, heart rate and power consumption is evaluated. As the result, complete pulsatile flow with mean flow rate of 5 L/min and mean pressure head of 100 mmHg can be obtained at ± 500 rpm with mean rotational speed of 1378 to 1398 rpm in hart rate from 60 to 120. Flow profiles which are non-pulsatile, quasi-pulsatile or complete flow can be adjusted arbitrarily. Therefore, HFP has excellent pulsatility and control flexibility of flow profile.


Assuntos
Coração Auxiliar , Hemorreologia , Desenho de Prótese , Fluxo Pulsátil/fisiologia , Frequência Cardíaca/fisiologia , Hidrodinâmica , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA