Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1180833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457736

RESUMO

Introduction: Several diseases caused by the dysregulation of complement activation can be treated with inhibitors of the complement components C5 and/or C3. However, complement is required for serum bactericidal activity (SBA) against encapsulated Gram-negative bacteria. Therefore, C3 and C5 inhibition increases the risk of invasive disease, in particular by Neisseria meningitidis. As inhibitors against complement components other than C3 and C5 may carry a reduced risk of infection, we compared the effect of inhibitors targeting the terminal pathway (C5), the central complement component C3, the alternative pathway (FB and FD), and the lectin pathway (MASP-2) on SBA against serogroup B meningococci. Methods: Serum from adults was collected before and after vaccination with the meningococcal serogroup B vaccine 4CMenB and tested for meningococcal killing. Since the B capsular polysaccharide is structurally similar to certain human polysaccharides, 4CMenB was designed to elicit antibodies against meningococcal outer membrane proteins. Results: While only a few pre-vaccination sera showed SBA against the tested B meningococcal isolates, 4CMenB vaccination induced potent complement-activating IgG titers against isolates expressing a matching allele of the bacterial cell surface-exposed factor H-binding protein (fHbp). SBA triggered by these cell surface protein-specific antibodies was blocked by C5 and reduced by C3 inhibition, whereas alternative (factor B and D) and lectin (MASP-2) pathway inhibitors had no effect on the SBA of post-4CMenB vaccination sera. Discussion: Compared to the SBA triggered by A,C,W,Y capsule polysaccharide conjugate vaccination, SBA against B meningococci expressing a matching fHbp allele was remarkably resilient against the alternative pathway inhibition.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Adulto , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose , Infecções Meningocócicas/prevenção & controle , Via Alternativa do Complemento , Anticorpos Antibacterianos , Vacinas Bacterianas , Proteínas do Sistema Complemento , Proteínas de Membrana
2.
Front Immunol ; 13: 1020580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578495

RESUMO

Defense against Haemophilus influenzae type b (Hib) is dependent on antibodies and complement, which mediate both serum bactericidal activity (SBA) and opsonophagocytosis. Here we evaluated the influence of capsule-specific antibodies and complement inhibitors targeting the central component C3, the alternative pathway (AP; fB, fD), the lectin pathway (LP; MASP-2) and the terminal pathway (C5) on both effector functions. Findings may be relevant for the treatment of certain diseases caused by dysregulation of the complement system, where inhibitors of complement factors C3 or C5 are used. Inhibitors against other complement components are being evaluated as potential alternative treatment options that may carry a reduced risk of infection by encapsulated bacteria. Serum and reconstituted blood of healthy adults were tested for bactericidal activity before and after vaccination with the Hib capsule-conjugate vaccine ActHIB. Most sera had bactericidal activity prior to vaccination, but vaccination significantly enhanced SBA titers. Independently of the vaccination status, both C3 and C5 inhibition abrogated SBA, whereas inhibition of the LP had no effect. AP inhibition had a major inhibitory effect on SBA of pre- vaccination serum, but vaccination mitigated this inhibition for all disease isolates tested. Despite this, SBA-mediated killing of some Hib isolates remained retarded. Even for the most serum-resistant isolate, SBA was the dominating defense mechanism in reconstituted whole blood, as addition of blood cells to the serum did not enhance bacterial killing. Limited Fc receptor-mediated opsonophagocytosis was unmasked when bacterial killing by the membrane attack complex was blocked. In the presence of C3 or C5 inhibitors, addition of post-vaccination, but not of pre-vaccination serum to the blood cells triggered opsonophagocytosis, leading to suppression of bacterial multiplication. Taken together, our data indicate that for host defense against Hib, killing by SBA is more efficient than by blood cell opsonophagocytosis. However, additional defense mechanisms, such as bacterial clearance by spleen and liver, may play an important role in preventing Hib-mediated sepsis, in particular for Hib isolates with increased serum-resistance. Results indicate potentially improved safety profile of AP inhibitors over C3 and C5 inhibitors as alternative therapeutic agents in patients with increased susceptibility to Hib infection.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae tipo b , Adulto , Humanos , Opsonização , Anticorpos Antibacterianos , Proteínas do Sistema Complemento
3.
Front Immunol ; 12: 747594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691058

RESUMO

Dysregulation of complement activation causes a number of diseases, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. These conditions can be treated with monoclonal antibodies (mAbs) that bind to the complement component C5 and prevent formation of the membrane attack complex (MAC). While MAC is involved in uncontrolled lysis of erythrocytes in these patients, it is also required for serum bactericidal activity (SBA), i.e. clearance of encapsulated bacteria. Therefore, terminal complement blockage in these patients increases the risk of invasive disease by Neisseria meningitidis more than 1000-fold compared to the general population, despite obligatory vaccination. It is assumed that alternative instead of terminal pathway inhibition reduces the risk of meningococcal disease in vaccinated individuals. To address this, we investigated the SBA with alternative pathway inhibitors. Serum was collected from adults before and after vaccination with a meningococcal serogroup A, C, W, Y capsule conjugate vaccine and tested for meningococcal killing in the presence of factor B and D, C3, C5 and MASP-2 inhibitors. B meningococci were not included in this study since the immune response against protein-based vaccines is more complex. Unsurprisingly, inhibition of C5 abrogated killing of meningococci by all sera. In contrast, both factor B and D inhibitors affected meningococcal killing in sera from individuals with low, but not with high bactericidal anti-capsular titers. While the anti-MASP-2 mAb did not impair SBA, inhibition of C3 impeded meningococcal killing in most, but not in all sera. These data provide evidence that vaccination can provide protection against invasive meningococcal disease in patients treated with alternative pathway inhibitors.


Assuntos
Anticorpos Antibacterianos/imunologia , Inativadores do Complemento/farmacologia , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/imunologia , Adulto , Idoso , Via Alternativa do Complemento/efeitos dos fármacos , Feminino , Humanos , Masculino
4.
Front Immunol ; 12: 732146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707606

RESUMO

To assess the relative contribution of opsonisation by antibodies, classical and alternative complement pathways to pneumococcal phagocytosis, we analyzed killing of pneumococci by human blood leukocytes collected from vaccine-naïve and PCV13-vaccinated subjects. With serotype 4 pneumococci as model, two different physiologic opsonophagocytosis assays based on either hirudin-anticoagulated whole blood or on washed cells from EDTA-anticoagulated blood reconstituted with active serum, were compared. Pneumococcal killing was measured in the presence of inhibitors targeting the complement components C3, C5, MASP-2, factor B or factor D. The two assay formats yielded highly consistent and comparable results. They highlighted the importance of alternative complement pathway activation for efficient opsonophagocytic killing in blood of vaccine-naïve subjects. In contrast, alternative complement pathway inhibition did not affect pneumococcal killing in PCV13-vaccinated individuals. Independent of amplification by the alternative pathway, even low capsule-specific antibody concentrations were sufficient to efficiently trigger classical pathway mediated opsonophagocytosis. In heat-inactivated or C3-inhibited serum, high concentrations of capsule-specific antibodies were required to trigger complement-independent opsonophagocytosis. Our findings suggest that treatment with alternative complement pathway inhibitors will increase susceptibility for invasive pneumococcal infection in non-immune subjects, but it will not impede pneumococcal clearance in vaccinated individuals.


Assuntos
Via Alternativa do Complemento , Proteínas do Sistema Complemento/imunologia , Opsonização , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/imunologia , Vacinação , Adulto , Idoso , Proteínas Inativadoras do Complemento/imunologia , Proteínas Inativadoras do Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade
5.
J Infect Dis ; 219(7): 1130-1137, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30346576

RESUMO

BACKGROUND: Meningococcal outer membrane vesicle (OMV) vaccines are prepared with detergents to remove endotoxin, which also remove desirable antigens such as factor H binding protein (FHbp). Native OMV (NOMV) vaccines with genetically attenuated endotoxin do not require detergent treatment and elicit broader serum bactericidal antibody (SBA) responses than OMV or recombinant FHbp (rFHbp) vaccines. METHODS: We measured human complement-mediated SBA responses in mice immunized with NOMV with overexpressed FHbp subfamily B (NOMV-FHbp), NOMV with FHbp genetically inactivated (NOMV-KO), and/or a control rFHbp vaccine against meningococcal and gonococcal strains. RESULTS: Despite having 36-fold less FHbp per dose, the NOMV-FHbp vaccine elicited a ≥3-fold higher serum IgG anti-FHbp geometric mean titer than control vaccines containing rFHbp (P ≤ .003). Against 2 meningococcal outbreak strains with mismatched PorA and heterologous FHbp subfamily B sequence variants, the NOMV-FHbp vaccine produced ≥30-fold higher SBA titers than control vaccines. Mice immunized with NOMV-FHbp and NOMV-KO vaccines also elicited SBA against a gonococcal strain (P < .0001 vs the adjuvant-only control group). In contrast, 2 licensed meningococcal serogroup B vaccines, including one containing detergent-extracted OMV, did not produce gonococcal SBA in humans. CONCLUSIONS: A meningococcal NOMV vaccine elicits SBA against gonococci and with overexpressed FHbp elicits SBA against meningococci.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Neisseria gonorrhoeae/imunologia , Neisseria meningitidis/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Endotoxinas/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Imunoglobulina G/sangue , Camundongos , Vacinas Atenuadas/imunologia
6.
Virulence ; 9(1): 1138-1149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067453

RESUMO

Whole genome sequencing analysis of 100 Neisseria meningitidis serogroup A isolates has revealed that the csaABCD-ctrABCD-ctrEF capsule polysaccharide synthesis locus represents a spontaneous point mutation hotspot. Structural and functional properties of the capsule of 11 carriage and two disease isolates with non-synonymous point mutations or stop codons in capsule synthesis genes were analyzed for their capsular polysaccharide expression, recognition by antibodies and sensitivity to bactericidal killing. Eight of eleven carriage isolates presenting capsule locus mutations expressed no or reduced amounts of capsule. One isolate with a stop codon in the O-acetyltransferase gene expressed non-O-acetylated polysaccharide, and was not recognized by anti-capsule antibodies. Capsule and O-acetylation deficient mutants were resistant to complement deposition and killing mediated by anti-capsular antibodies, but not by anti-lipopolysaccharide antibodies. Two capsule polymerase mutants, one carriage and one case isolate, showed capsule over-expression and increased resistance against bactericidal activity of both capsule- and lipopolysaccharide-specific antibodies. Meningococci have developed multiple strategies for changing capsule expression and structure, which is relevant both for colonization and virulence. Here we show that point mutations in the capsule synthesis genes substantially contribute to the repertoire of genetic mechanisms in natural populations leading to variability in capsule expression.


Assuntos
Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Neisseria meningitidis Sorogrupo A/genética , Neisseria meningitidis Sorogrupo A/patogenicidade , Mutação Puntual , Animais , Anticorpos Antibacterianos/farmacologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/efeitos dos fármacos , Burkina Faso , Portador Sadio/microbiologia , Variação Genética , Genoma Bacteriano , Gana , Humanos , Imunidade Coletiva , Meningite Meningocócica/microbiologia , Camundongos , Neisseria meningitidis Sorogrupo A/química , Neisseria meningitidis Sorogrupo A/imunologia , Polissacarídeos Bacterianos/genética , Virulência/genética
7.
Vaccine ; 32(23): 2688-95, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24704334

RESUMO

INTRODUCTION: Neisseria meningitidis causes epidemics of meningitis in sub-Saharan Africa. These have mainly been caused by capsular group A strains, but W and X strains are increasingly contributing to the burden of disease. Therefore, an affordable vaccine that provides broad protection against meningococcal disease in sub-Saharan Africa is required. METHODS: We prepared Generalized Modules for Membrane Antigens (GMMA) from a recombinant serogroup W strain expressing PorA P1.5,2, which is predominant among African W isolates. The strain was engineered with deleted capsule locus genes, lpxL1 and gna33 genes and over-expressed fHbp variant 1, which is expressed by the majority of serogroup A and X isolates. RESULTS: We screened nine W strains with deleted capsule locus and gna33 for high-level GMMA release. A mutant with five-fold increased GMMA release compared with the wild type was further engineered with a lpxL1 deletion and over-expression of fHbp. GMMA from the production strain had 50-fold lower ability to stimulate IL-6 release from human PBMC and caused 1000-fold lower TLR-4 activation in Human Embryonic Kidney cells than non-detoxified GMMA. In mice, the GMMA vaccine induced bactericidal antibody responses against African W strains expressing homologous PorA and fHbp v.1 or v.2 (geometric mean titres [GMT]=80,000-200,000), and invasive African A and X strains expressing a heterologous PorA and fHbp variant 1 (GMT=20-2500 and 18-5500, respectively). Sera from mice immunised with GMMA without over-expressed fHbp v.1 were unable to kill the A and X strains, indicating that bactericidal antibodies against these strains are directed against fHbp. CONCLUSION: A GMMA vaccine produced from a recombinant African N. meningitidis W strain with deleted capsule locus, lpxL1, gna33 and overexpressed fHbp v.1 has potential as an affordable vaccine with broad coverage against strains from all main serogroups currently causing meningococcal meningitis in sub-Saharan Africa.


Assuntos
Antígenos de Bactérias/imunologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Técnicas de Inativação de Genes , Engenharia Genética , Células HEK293 , Humanos , Imunoglobulina G/sangue , Interleucina-6/imunologia , Camundongos , Neisseria meningitidis Sorogrupo W-135/genética , Ensaios de Anticorpos Bactericidas Séricos
8.
F1000Res ; 3: 264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25901274

RESUMO

Neisseria meningitidis is a major cause of bacterial meningitis and a considerable health problem in the 25 countries of the 'African Meningitis Belt' that extends from Senegal in West Africa to Ethiopia in the East. Approximately 80% of cases of meningococcal meningitis in Africa have been caused by strains belonging to capsular serogroup A. After the introduction of a serogroup A conjugate polysaccharide vaccine, MenAfriVac (™), that began in December 2010, the incidence of meningitis due to serogroup A has markedly declined in this region. Currently, serogroup W of N. meningitidis accounts for the majority of cases. Vaccines based on sub-capsular antigens, such as Generalized Modules for Membrane Antigens (GMMA), are under investigation for use in Africa. To analyse the antigenic properties of a serogroup W wave of colonisation and disease, we investigated the molecular diversity of the protein vaccine antigens PorA, Neisserial Adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and factor H binding protein (fHbp) of 31 invasive and carriage serogroup W isolates collected as part of a longitudinal study from Ghana and Burkina Faso between 2003 and 2009. We found that the isolates all expressed fHbp variant 2 ID 22 or 23, differing from each other by only one amino acid, and a single PorA subtype of P1.5,2. Of the isolates, 49% had a functional nhbA gene and 100% had the nadA allele 3, which contained the insertion sequence IS1301 in five isolates. Of the W isolates tested, 41% had high fHbp expression when compared with a reference serogroup B strain, known to be a high expresser of fHbp variant 2. Our results indicate that in this collection of serogroup W isolates, there is limited antigenic diversification over time of vaccine candidate outer membrane proteins (OMP), thus making them promising candidates for inclusion in a protein-based vaccine against meningococcal meningitis for Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA