Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain ; 25(1): 88-100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524219

RESUMO

The platinum chemotherapeutic oxaliplatin produces dose-limiting pain, dysesthesia, and cold hypersensitivity in most patients immediately after infusion. An improved understanding of the mechanisms underlying these symptoms is urgently required to facilitate the development of symptomatic or preventative therapies. In this study, we have used skin-saphenous nerve recordings in vitro and behavioral experiments in mice to characterize the direct effects of oxaliplatin on different types of sensory afferent fibers. Our results confirmed that mice injected with oxaliplatin rapidly develop mechanical and cold hypersensitivities. We further noted profound changes to A fiber activity after the application of oxaliplatin to the receptive fields in the skin. Most oxaliplatin-treated Aδ- and rapidly adapting Aß-units lost mechanical sensitivity, but units that retained responsiveness additionally displayed a novel, aberrant cold sensitivity. Slowly adapting Aß-units did not display mechanical tachyphylaxis, and a subset of these fibers was sensitized to mechanical and cold stimulation after oxaliplatin treatment. C fiber afferents were less affected by acute applications of oxaliplatin, but a subset gained cold sensitivity. Taken together, our findings suggest that direct effects on peripheral A fibers play a dominant role in the development of acute oxaliplatin-induced cold hypersensitivity, numbness, and dysesthesia. PERSPECTIVE: The chemotherapeutic drug oxaliplatin rapidly gives rise to dose-limiting cold pain and dysesthesia. Here, we have used behavioral and electrophysiological studies of mice to characterize the responsible neurons. We show that oxaliplatin directly confers aberrant cold responsiveness to subsets of A-fibers while silencing other fibers of the same type.


Assuntos
Antineoplásicos , Síndromes Periódicas Associadas à Criopirina , Humanos , Camundongos , Animais , Oxaliplatina/efeitos adversos , Parestesia , Síndromes Periódicas Associadas à Criopirina/induzido quimicamente , Dor , Hiperalgesia/induzido quimicamente , Antineoplásicos/efeitos adversos
2.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
3.
Eur J Pharmacol ; 925: 175013, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537491

RESUMO

QX-314 is a quaternary permanently charged lidocaine derivative that inhibits voltage-gated sodium channels (NaV). As it is membrane impermeable, it is generally considered that QX-314 applied externally is inactive, unless it can gain access to the internal local anesthetic binding site via another entry pathway. Here, we characterized the electrophysiological effects of QX-314 on NaV1.7 heterologously expressed in HEK293 cells, and found that at high concentrations, external QX-314 inhibited NaV1.7 current (IC50 2.0 ± 0.3 mM) and shifted the voltage-dependence to more depolarized potentials (ΔV50 +10.6 mV). Unlike lidocaine, the activity of external QX-314 was not state- or use-dependent. The effect of externally applied QX-314 on NaV1.7 channel biophysics differed to that of internally applied QX-314, suggesting QX-314 has an additional externally accessible site of action. In line with this hypothesis, disruption of the local anesthetic binding site in a [F1748A]NaV1.7 mutant reduced the potency of lidocaine by 40-fold, but had no effect on the potency or activity of externally applied QX-314. Therefore, we conclude, using an expression system where QX-314 was unable to cross the membrane, that externally applied QX-314 is able to inhibit NaV1.7 peak current at low millimolar concentrations.


Assuntos
Anestésicos Locais , Lidocaína , Anestésicos Locais/farmacologia , Células HEK293 , Humanos , Lidocaína/análogos & derivados , Lidocaína/farmacologia , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
4.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196305

RESUMO

Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.


Assuntos
Fibromialgia/imunologia , Fibromialgia/fisiopatologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibromialgia/etiologia , Gânglios Espinais/fisiopatologia , Humanos , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptores/imunologia , Nociceptores/fisiologia , Dor/fisiopatologia , Limiar da Dor/fisiologia
5.
Sci Adv ; 6(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938666

RESUMO

Stinging trees from Australasia produce remarkably persistent and painful stings upon contact of their stiff epidermal hairs, called trichomes, with mammalian skin. Dendrocnide-induced acute pain typically lasts for several hours, and intermittent painful flares can persist for days and weeks. Pharmacological activity has been attributed to small-molecule neurotransmitters and inflammatory mediators, but these compounds alone cannot explain the observed sensory effects. We show here that the venoms of Australian Dendrocnide species contain heretofore unknown pain-inducing peptides that potently activate mouse sensory neurons and delay inactivation of voltage-gated sodium channels. These neurotoxins localize specifically to the stinging hairs and are miniproteins of 4 kDa, whose 3D structure is stabilized in an inhibitory cystine knot motif, a characteristic shared with neurotoxins found in spider and cone snail venoms. Our results provide an intriguing example of inter-kingdom convergent evolution of animal and plant venoms with shared modes of delivery, molecular structure, and pharmacology.

6.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958636

RESUMO

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Assuntos
Evolução Molecular , Neurotoxinas/genética , Poliaminas/química , Aranhas/genética , Sequência de Aminoácidos/genética , Animais , Austrália , Sequência Conservada/genética , Feminino , Humanos , Masculino , Camundongos , Neurotoxinas/química , Neurotoxinas/metabolismo , Peptídeos/genética , Filogenia , Poliaminas/metabolismo , Comportamento Sexual Animal/fisiologia , Venenos de Aranha/genética , Aranhas/patogenicidade , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiologia
7.
Biomedicines ; 8(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545167

RESUMO

NaV1.3 is a subtype of the voltage-gated sodium channel family. It has been implicated in the pathogenesis of neuropathic pain, although the contribution of this channel to neuronal excitability is not well understood. Tf2, a ß-scorpion toxin previously identified from the venom of Tityus fasciolatus, has been reported to selectively activate NaV1.3. Here, we describe the activity of synthetic Tf2 and assess its suitability as a pharmacological probe for NaV1.3. As described for the native toxin, synthetic Tf2 (1 µM) caused early channel opening, decreased the peak current, and shifted the voltage dependence of NaV1.3 activation in the hyperpolarizing direction by -11.3 mV, with no activity at NaV1.1, NaV1.2, and NaV1.4-NaV1.8. Additional activity was found at NaV1.9, tested using the hNav1.9_C4 chimera, where Tf2 (1 µM) shifted the voltage dependence of activation by -6.3 mV. In an attempt to convert Tf2 into an NaV1.3 inhibitor, we synthetized the analogue Tf2[S14R], a mutation previously described to remove the excitatory activity of related ß-scorpion toxins. Indeed, Tf2[S14R](10 µM) had reduced excitatory activity at NaV1.3, although it still caused a small -5.8 mV shift in the voltage dependence of activation. Intraplantar injection of Tf2 (1 µM) in mice caused spontaneous flinching and swelling, which was not reduced by the NaV1.1/1.3 inhibitor ICA-121431 nor in NaV1.9-/- mice, suggesting off-target activity. In addition, despite a loss of excitatory activity, intraplantar injection of Tf2[S14R](10 µM) still caused swelling, providing strong evidence that Tf2 has additional off-target activity at one or more non-neuronal targets. Therefore, due to activity at NaV1.9 and other yet to be identified target(s), the use of Tf2 as a selective pharmacological probe may be limited.

8.
Biochem Pharmacol ; 181: 114096, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32535105

RESUMO

Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.


Assuntos
Pesquisa Biomédica/métodos , Descoberta de Drogas/métodos , Peptídeos/farmacologia , Toxinas Biológicas/farmacologia , Peçonhas/farmacologia , Animais , Desenvolvimento de Medicamentos/métodos , Humanos , Terapia de Alvo Molecular/métodos , Peptídeos/química , Peptídeos/uso terapêutico , Conformação Proteica , Toxinas Biológicas/química , Toxinas Biológicas/uso terapêutico , Peçonhas/química , Peçonhas/metabolismo , Peçonhas/uso terapêutico
9.
J Biol Chem ; 295(15): 5067-5080, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139508

RESUMO

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.


Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptividade/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Venenos de Escorpião/toxicidade
10.
J Physiol ; 597(14): 3751-3768, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087362

RESUMO

KEY POINTS: Voltage-gated sodium channels are critical for peripheral sensory neuron transduction and have been implicated in a number of painful and painless disorders. The ß-scorpion toxin, Cn2, is selective for NaV 1.6 in dorsal root ganglion neurons. NaV 1.6 plays an essential role in peripheral sensory neurons, specifically at the distal terminals of mechanosensing fibres innervating the skin and colon. NaV 1.6 activation also leads to enhanced response to mechanical stimulus in vivo. This works highlights the use of toxins in elucidating pain pathways moreover the importance of non-peripherally restricted NaV isoforms in pain generation. ABSTRACT: Peripheral sensory neurons express multiple voltage-gated sodium channels (NaV ) critical for the initiation and propagation of action potentials and transmission of sensory input. Three pore-forming sodium channel isoforms are primarily expressed in the peripheral nervous system (PNS): NaV 1.7, NaV 1.8 and NaV 1.9. These sodium channels have been implicated in painful and painless channelopathies and there has been intense interest in them as potential therapeutic targets in human pain. Emerging evidence suggests NaV 1.6 channels are an important isoform in pain sensing. This study aimed to assess, using pharmacological approaches, the function of NaV 1.6 channels in peripheral sensory neurons. The potent and NaV 1.6 selective ß-scorpion toxin Cn2 was used to assess the effect of NaV 1.6 channel activation in the PNS. The multidisciplinary approach included Ca2+ imaging, whole-cell patch-clamp recordings, skin-nerve and gut-nerve preparations and in vivo behavioural assessment of pain. Cn2 facilitates NaV 1.6 early channel opening, and increased persistent and resurgent currents in large-diameter dorsal root ganglion (DRG) neurons. This promotes enhanced excitatory drive and tonic action potential firing in these neurons. In addition, NaV 1.6 channel activation in the skin and gut leads to increased response to mechanical stimuli. Finally, intra-plantar injection of Cn2 causes mechanical but not thermal allodynia. This study confirms selectivity of Cn2 on NaV 1.6 channels in sensory neurons. Activation of NaV 1.6 channels, in terminals of the skin and viscera, leads to profound changes in neuronal responses to mechanical stimuli. In conclusion, sensory neurons expressing NaV 1.6 are important for the transduction of mechanical information in sensory afferents innervating the skin and viscera.


Assuntos
Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Feminino , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/metabolismo , Sistema Nervoso Periférico/metabolismo , Pele/metabolismo , Vísceras/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
11.
Neurosci Lett ; 679: 4-14, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29425731

RESUMO

Toxins have been used as tools for decades to study the structure and function of neuronal ion channels and receptors. The biological origin of these toxins varies from single cell organisms, including bacteria and algae, to complex multicellular organisms, including a wide variety of plants and venomous animals. Toxins are a structurally and functionally diverse group of compounds that often modulate neuronal function by interacting with an ion channel or receptor. Many of these toxins display high affinity and exquisite selectivity, making them valuable tools to probe the structure and function of neuronal ion channels and receptors. This review article provides an overview of the experimental techniques used to assess the effects that toxins have on neuronal function, as well as discussion on toxins that have been used as tools, with a focus on toxins that target voltage-gated and ligand-gated ion channels.


Assuntos
Neurônios/efeitos dos fármacos , Neurofarmacologia/métodos , Neurotoxinas/farmacologia , Neurotoxinas/uso terapêutico , Células Receptoras Sensoriais/metabolismo , Animais , Escala de Avaliação Comportamental , Eletrofisiologia/métodos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Modelos Animais , Neurônios/fisiologia , Células Receptoras Sensoriais/química
12.
J Med Chem ; 61(4): 1730-1736, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29378414

RESUMO

We report the chemical synthesis of scorpion toxin Cn2, a potent and highly selective activator of the human voltage-gated sodium channel NaV1.6. In an attempt to decouple channel activation from channel binding, we also synthesized the first analogue of this toxin, Cn2[E15R]. This mutation caused uncoupling of the toxin's excitatory and depressant activities, effectively resulting in a NaV1.6 inhibitor. In agreement with the in vitro observations, Cn2[E15R] is antinociceptive in mouse models of NaV1.6-mediated pain.


Assuntos
Analgésicos/síntese química , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Mutação Puntual , Venenos de Escorpião/química , Toxinas Biológicas/síntese química , Animais , Humanos , Camundongos , Proteínas Mutantes/farmacologia , Dor/tratamento farmacológico , Mutação Puntual/fisiologia , Escorpiões , Toxinas Biológicas/genética
13.
Adv Pharmacol ; 79: 67-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528674

RESUMO

Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.


Assuntos
Peptídeos/farmacologia , Canais de Sódio/metabolismo , Peçonhas/farmacologia , Sequência de Aminoácidos , Animais , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Neuropharmacology ; 127: 87-108, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28416444

RESUMO

Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Assuntos
Peptídeos/farmacologia , Peçonhas/química , Agonistas do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia
15.
Sci Rep ; 7: 42810, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28225079

RESUMO

Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1-1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Ciguatoxinas/toxicidade , Gânglios Espinais/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Isoformas de Proteínas/metabolismo
17.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26156767

RESUMO

Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition.


Assuntos
Evolução Biológica , Conotoxinas/genética , Caramujo Conus/fisiologia , Camundongos/fisiologia , Dor , Comportamento Predatório , Sequência de Aminoácidos , Animais , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Caramujo Conus/genética , Masculino , Camundongos Endogâmicos C57BL , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...